1 |
MÜLLER R, GRAMICH V, WAURO M, et al. High operating temperature InAs/GaSb type-Ⅱ superlattice detectors on GaAs substrate for the long wavelength infrared[J]. Infrared Physics & Technology, 2019, 96: 141-144.
|
2 |
CRAIG A P, LETKA V, CARMICHAEL M, et al. InAsSb-based detectors on GaSb for near-room-temperature operation in the mid-wave infrared[J]. Applied Physics Letters, 2021, 118(25): 251103.
|
3 |
NISHIMOTO N, FUJIHARA J, YOSHINO K. Biocompatibility of GaSb thin films grown by RF magnetron sputtering[J]. Applied Surface Science, 2017, 409: 375-380.
|
4 |
ZHOU X C, LI D S, HUANG J L, et al. Mid-wavelength type Ⅱ InAs/GaSb superlattice infrared focal plane arrays[J]. Infrared Physics & Technology, 2016, 78: 263-267.
|
5 |
LOTFI H, LI L, SHAZZAD RASSEL S M, et al. Monolithically integrated mid-IR interband cascade laser and photodetector operating at room temperature[J]. Applied Physics Letters, 2016, 109(15): 151111.
|
6 |
DONG W M, JIANG J, PENG Q W, et al. Study on the facet effect in LEC-GaSb single crystals[J]. Journal of Crystal Growth, 2024, 636: 127706.
|
7 |
刘京明, 杨 俊, 赵有文, 等. GaSb单晶研究进展[J]. 人工晶体学报, 2024, 53(1): 1-11.
|
|
LIU J M, YANG J, ZHAO Y W, et al. Research progress of GaSb single crystal[J]. Journal of Synthetic Crystals, 2024, 53(1): 1-11 (in Chinese).
|
8 |
REIJNEN L, BRUNTON R, GRANT I R. Comparison of LEC-grown and VGF-grown GaSb[C]// AIP Conference Proceedings. American Institute of Physics, 2004, 738(1): 360-367.
|
9 |
赵有文, 段满龙, 卢 伟, 等. 4 inch低位错密度InP单晶的VGF生长及性质研究[J]. 人工晶体学报, 2017, 46(5): 792-796.
|
|
ZHAO Y W, DUAN M L, LU W, et al. VGF growth and property of 4 inch diameter InP single crystals with low dislocation density[J]. Journal of Synthetic Crystals, 2017, 46(5): 792-796 (in Chinese).
|
10 |
YAN B, LIU W H, YU Z J, et al. Temperature dynamic compensation vertical Bridgman method growth of high-quality GaSb single crystals[J]. Journal of Crystal Growth, 2023, 602: 126988.
|
11 |
SIM B C, JUNG Y H, LEE J E, et al. Effect of the crystal-melt interface on the grown-in defects in silicon CZ growth[J]. Journal of Crystal Growth, 2007, 299(1): 152-157.
|
12 |
KLIN O, SNAPI N, COHEN Y, et al. A study of MBE growth-related defects in InAs/GaSb type-Ⅱ supperlattices for long wavelength infrared detectors[J]. Journal of Crystal Growth, 2015, 425: 54-59.
|
13 |
KOERPERICK E J, MURRAY L M, NORTON D T, et al. Optimization of MBE-grown GaSb buffer layers and surface effects of antimony stabilization flux[J]. Journal of Crystal Growth, 2010, 312(2): 185-191.
|
14 |
ZHU Y B, WEN H H, ZHANG H Y, et al. Real-time in situ observation of extended defect evolution near a crack tip in GaSb crystal under thermal loading[J]. Applied Surface Science, 2020, 515: 145934.
|
15 |
杨 俊, 段满龙, 卢 伟, 等. 低位错密度4 inch GaSb(100)单晶生长及高质量衬底制备[J]. 人工晶体学报, 2017, 46(5): 820-824.
|
|
YANG J, DUAN M L, LU W, et al. Growth of 4 inch diameter GaSb(100) single crystal with low dislocation density and high quality substrate preparation[J]. Journal of Synthetic Crystals, 2017, 46(5): 820-824 (in Chinese).
|
16 |
NOGHABI O A, JOMÂA M, M’HAMDI M. Analysis of W-shape melt/crystal interface formation in Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2013, 362: 77-82.
|
17 |
ZHOU Y, ZHAO Y W, XIE H, et al. Residual stress distribution and flatness of dislocation-free Te-GaSb (100) substrate[J]. Japanese Journal of Applied Physics, 2021, 60(3): 035510.
|
18 |
BRIGHTUP S, GOORSKY M S. Chemical-mechanical polishing for Ⅲ-Ⅴ wafer bonding applications: polishing, roughness, and an abrasive-free polishing model[J]. ECS Transactions, 2010, 33(4): 383-389.
|
19 |
Inc STR. CGSim software[OL]. STR Inc., [2024-12-30]. https://str-soft.com/.
|
20 |
Inc STR. CGSim theory manual[Z]. v.22.1. Richmond VA: STR Inc., 2022.
|
21 |
Inc STR. CGSim flow module theory manual[Z]. v.24.1. Richmond VA: STR Inc., 2024.
|
22 |
NGUYEN T H T, CHEN J C, HU C, et al. Numerical simulation of heat and mass transfer during Czochralski silicon crystal growth under the application of crystal-crucible counter- and iso-rotations[J]. Journal of Crystal Growth, 2019, 507: 50-57.
|
23 |
LI X L, LIU Y L, WANG B, et al. Global heat loss and thermal stress analysis in Czochralski crystal growth[J]. Crystal Research and Technology, 2014, 49(6): 376-382.
|
24 |
冯银红, 沈桂英, 赵有文, 等. 无位错Te-GaSb(100)单晶抛光衬底的晶格完整性[J]. 人工晶体学报, 2022, 51(6): 1003-1011.
|
|
FENG Y H, SHEN G Y, ZHAO Y W, et al. Lattice perfection of dislocation-free (100) Te-GaSb single crystal polished substrate[J]. Journal of Synthetic Crystals, 2022, 51(6): 1003-1011 (in Chinese).
|
25 |
SHEN G Y, ZHAO Y W, LIU J M, et al. Oxidation related particles on GaSb (100) substrate surfaces[J]. Journal of Crystal Growth, 2022, 581: 126499.
|
26 |
GRAY N W, PRAX A, JOHNSON D, et al. Rapid development of high-volume manufacturing methods for epi-ready GaSb wafers up to 6″ diameter for IR imaging applications[C]// SPIE Defense+Security. Proc SPIE 9819, Infrared Technology and Applications XLII, Baltimore, MD, USA. 2016, 9819: 274-284.
|
27 |
MARTINEZ R, TYBJERG M, FLINT P, et al. A study of the preparation of epitaxy-ready polished surfaces of (100) gallium antimonide substrates demonstrating ultra-low surface defects for MBE growth[C]// Infrared Technology and Applications XLII. Baltimore, Maryland, USA. SPIE, 2016: 298-309.
|
28 |
FURLONG M J, MARTINEZ B, TYBJERG M, et al. Growth and characterization of ≥6″ epitaxy-ready GaSb substrates for use in large area infrared imaging applications[C]// Infrared Technology and Applications XLI. Baltimore, Maryland, USA. SPIE, 2015: 182-189.
|
29 |
MARTINEZ R, AMIRHAGHI S, SMITH B, et al. Large diameter ‘ultra-flat’ epitaxy ready GaSb substrates: requirements for MBE grown advanced infrared detectors[C]// Infrared Technology and Applications XXXVIII. Baltimore, Maryland. SPIE, 2012: 8353.
|