欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1654-1662.DOI: 10.16553/j.cnki.issn1000-985x.2025.0036

• 研究论文 • 上一篇    下一篇

高性能锂离子电池纳米Fe2O3/竹叶碳复合负极材料

望军(), 金姚瑶, 胡章涛, 郑毅, 张瀚   

  1. 重庆科技大学材料与新能源学院,重庆 401331
  • 收稿日期:2025-02-25 出版日期:2025-09-20 发布日期:2025-09-23
  • 作者简介:望军(1978—),男,湖北省人,博士,副教授。E-mail:wangjunpaper@126.com
  • 基金资助:
    重庆市教委科学技术研究项目(KJQN202401536);重庆科技大学研究生创新计划项目(YKJCX2421609)

Nano-Fe2O3/Bamboo Leaf Carbon Composite Anode Materials for High-Performance Lithium-Ion Batteries

WANG Jun(), JIN Yaoyao, HU Zhangtao, ZHENG Yi, ZHANG Han   

  1. School of Materials and Energy,Chongqing University of Science and Technology,Chongqing 401331,China
  • Received:2025-02-25 Online:2025-09-20 Published:2025-09-23

摘要: 作为锂离子电池负极材料的过渡金属氧化物,Fe2O3具有高理论比容量(1 007 mAh/g)、储量丰富和环境友好性等优点。然而,在实际应用中,低导电性和循环过程中较高的体积效应限制了其性能的发挥。引入碳基质和纳米化是解决上述问题的有效策略。竹叶碳材料具有成本低、产量大的优势,将其作为碳基质可以提高复合材料的导电性,并缓冲负极活性材料的体积膨胀。本文以来源丰富的竹叶为碳源制备碳材料,通过水热法获得纳米Fe2O3,最终通过溶剂热法将竹叶碳与纳米Fe2O3结合,制备出纳米Fe2O3/竹叶碳负极材料。电化学测试显示,纳米Fe2O3/竹叶碳在200 mA/g的电流密度下经过203次循环后仍保持704.6 mAh/g的高比容量,在较大电流密度500 mA/g下比容量达到472 mAh/g。竹叶碳的引入提升了锂离子在电极材料中嵌入嵌出的扩散动力,且增加了赝电容行为对容量的贡献。本研究为利用生物质衍生碳提高锂离子电池负极材料的可逆容量和循环寿命提供了新思路。

关键词: Fe2O3; 竹叶碳; 锂离子电池; 负极; 可逆容量; 循环寿命

Abstract: The transition metal oxide Fe2O3, as an anode material for lithium-ion batteries, exhibits advantages such as high theoretical specific capacity (1 007 mAh/g), abundant reserves, and environmental friendliness. However, in practical applications, its performance is limited by low conductivity and significant volume expansion during cycling. Introducing a carbon matrix and nanostructuring are effective strategies to address these issues. The bamboo leaf carbon offers advantages of low cost and high yield. As a carbon matrix, it enhances the conductivity of the composite and buffers the volume expansion of the anode active material. In this study, bamboo leaves were used as a carbon source to prepare carbon materials. Nano-Fe2O3 was synthesized by hydrothermal method, and finally, a solvothermal method was employed to combine bamboo leaf-derived carbon with nano-Fe2O3, producing a nano-Fe2O3/bamboo leaf carbon composite anode material. Electrochemical tests reveal that the nano-Fe2O3/bamboo leaf carbon composite maintains a high specific capacity of 704.6 mAh/g after 203 cycles at a current density of 200 mA/g, while delivering a specific capacity of 472 mAh/g at a higher current density of 500 mA/g. The incorporation of bamboo leaf carbon improves the diffusion kinetics of lithium-ion insertion/extraction in the electrode material, and also increases the contribution of pseudocapacitive behavior to the capacity. This study provides a novel approach for utilizing biomass-derived carbon to enhance the reversible capacity and cycling stability of lithium-ion battery anode materials.

Key words: Fe2O3; bamboo leaf carbon; Li-ion battery; anode; reversible capacity; cycling stability

中图分类号: