
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1654-1662.DOI: 10.16553/j.cnki.issn1000-985x.2025.0036
收稿日期:2025-02-25
出版日期:2025-09-20
发布日期:2025-09-23
作者简介:望军(1978—),男,湖北省人,博士,副教授。E-mail:wangjunpaper@126.com
基金资助:
WANG Jun(
), JIN Yaoyao, HU Zhangtao, ZHENG Yi, ZHANG Han
Received:2025-02-25
Online:2025-09-20
Published:2025-09-23
摘要: 作为锂离子电池负极材料的过渡金属氧化物,Fe2O3具有高理论比容量(1 007 mAh/g)、储量丰富和环境友好性等优点。然而,在实际应用中,低导电性和循环过程中较高的体积效应限制了其性能的发挥。引入碳基质和纳米化是解决上述问题的有效策略。竹叶碳材料具有成本低、产量大的优势,将其作为碳基质可以提高复合材料的导电性,并缓冲负极活性材料的体积膨胀。本文以来源丰富的竹叶为碳源制备碳材料,通过水热法获得纳米Fe2O3,最终通过溶剂热法将竹叶碳与纳米Fe2O3结合,制备出纳米Fe2O3/竹叶碳负极材料。电化学测试显示,纳米Fe2O3/竹叶碳在200 mA/g的电流密度下经过203次循环后仍保持704.6 mAh/g的高比容量,在较大电流密度500 mA/g下比容量达到472 mAh/g。竹叶碳的引入提升了锂离子在电极材料中嵌入嵌出的扩散动力,且增加了赝电容行为对容量的贡献。本研究为利用生物质衍生碳提高锂离子电池负极材料的可逆容量和循环寿命提供了新思路。
中图分类号:
望军, 金姚瑶, 胡章涛, 郑毅, 张瀚. 高性能锂离子电池纳米Fe2O3/竹叶碳复合负极材料[J]. 人工晶体学报, 2025, 54(9): 1654-1662.
WANG Jun, JIN Yaoyao, HU Zhangtao, ZHENG Yi, ZHANG Han. Nano-Fe2O3/Bamboo Leaf Carbon Composite Anode Materials for High-Performance Lithium-Ion Batteries[J]. Journal of Synthetic Crystals, 2025, 54(9): 1654-1662.
| Reagents name | Chemical formula/Abbreviation | Purity | Manufacturer |
|---|---|---|---|
| Ammonium fluoride | NH4F | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Urea | CH4N2O | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Ferric nitrate | Fe(NO3)3·9H2O | Analytical pure | Tianjin Damao Chemical Reagent Factory |
| N-methylpyrrolidone | NMP | Analytical pure | Wuxi Yatai United Chemical Co., Ltd. |
| Polyvinylidene fluoride | PVDF | Analytical pure | Zhongcheng Plastics Co., Ltd. |
| Acetylene black | C | Battery grade | Shanghai Dengke Industrial Co., Ltd. |
| Anhydrous ethanol | C2H5OH | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
| Lithium sheet | Li | Battery grade | Shanghai Oujin Industrial Co., Ltd. |
| High purity nitrogen | N2 | 99.999% | Chongqing Chaoyang Gas Co., Ltd. |
| Electrolyte | LiPF6/(EC+EMC) | Battery grade | Tianjin Aiweixin Chemical Technology Co., Ltd. |
| Membrane | Celgard-2400 | Battery grade | Celgard LLC |
| Hydrofluoric acid | HF | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
表1 化学试剂和药品
Table 1 Reagents and drugs required for the experiment
| Reagents name | Chemical formula/Abbreviation | Purity | Manufacturer |
|---|---|---|---|
| Ammonium fluoride | NH4F | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Urea | CH4N2O | Analytical pure | Chengdu Cologne Chemical Co., Ltd. |
| Ferric nitrate | Fe(NO3)3·9H2O | Analytical pure | Tianjin Damao Chemical Reagent Factory |
| N-methylpyrrolidone | NMP | Analytical pure | Wuxi Yatai United Chemical Co., Ltd. |
| Polyvinylidene fluoride | PVDF | Analytical pure | Zhongcheng Plastics Co., Ltd. |
| Acetylene black | C | Battery grade | Shanghai Dengke Industrial Co., Ltd. |
| Anhydrous ethanol | C2H5OH | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
| Lithium sheet | Li | Battery grade | Shanghai Oujin Industrial Co., Ltd. |
| High purity nitrogen | N2 | 99.999% | Chongqing Chaoyang Gas Co., Ltd. |
| Electrolyte | LiPF6/(EC+EMC) | Battery grade | Tianjin Aiweixin Chemical Technology Co., Ltd. |
| Membrane | Celgard-2400 | Battery grade | Celgard LLC |
| Hydrofluoric acid | HF | Analytical pure | Chongqing Chuandong Chemical Co., Ltd. |
图2 (a)纯竹叶碳、纯Fe2O3和Fe2O3/C的XRD图谱;(b)Fe2O3/C的拉曼光谱
Fig.2 (a) XRD patterns of pure bamboo leaf carbon, pure Fe2O3 and Fe2O3/C; (b) Raman spectrum of Fe2O3/C
图3 (a)C的SEM照片;(b)Fe2O3的SEM照片;(c)Fe2O3/C的SEM照片;(d)Fe2O3/C的元素mapping图:C、O和Fe分别为红色、蓝色和绿色区域
Fig.3 (a) SEM image of C; (b) SEM image of Fe2O3; (c) SEM image of Fe2O3/C; (d) elemental mapping of Fe2O3/C: C, O, and Fe were red, biue and green regions, respectively
图4 Fe2O3、C和Fe2O3/C不同电流密度下的倍率性能(a)与在200 mA/g下的循环性能(b)
Fig.4 Rate performances at various current densities (a) and cyclic performances at 200 mA/g (b) for the pure Fe2O3, C and Fe2O3/C
图5 (a)Fe2O3/C在电流密度为500 mA/g时的电化学性能;(b)200 mA/g下Fe2O3/C的充放电曲线;(c)三次循环后纯Fe2O3、C和Fe2O3/C的奈奎斯特图;(d)0.1 mV/s下Fe2O3/C的C-V曲线
Fig.5 (a) Electrochemical performance at a current density of 500 mA/g for the Fe2O3/C; (b) galvanostatic charge-discharge curves of Fe2O3/C at 200 mA/g; (c) Nyquist plots of the pure Fe2O3, C and Fe2O3/C after three cycling; (d) C-V curves of Fe2O3/C at 0.1 mV/s
图6 Fe2O3@C(a)和Fe2O3(b)在0.2~1.0 mV/s的不同扫描速率下的C-V曲线;(c)峰值电流与扫描速率之间的对数关系,以及相应的线性拟合;Fe2O3@C(d)和Fe2O3(e)在不同扫描速率下的伪电容贡献率
Fig.6 C-V curves of Fe2O3@C (a) and Fe2O3 (b) under different scan rates ranging from 0.2 mV/s to 1.0 mV/s; (c) logarithmic relationship between peak current and scan rate, and corresponding linear fit; contribution rate of pseudocapacitance at different scan rates for Fe2O3@C (d) and Fe2O3 (e)
| [1] | KANG M S, HEO I, KIM S, et al. High-areal-capacity of micron-sized silicon anodes in lithium-ion batteries by using wrinkled-multilayered-graphenes[J]. Energy Storage Materials, 2022, 50: 234-242. |
| [2] | CHEN X, LI H X, YAN Z H, et al. Structure design and mechanism analysis of silicon anode for lithium-ion batteries[J]. Science China Materials, 2019, 62(11): 1515-1536. |
| [3] | SUN X, ZHANG J, ZHANG H R, et al. Co3O4 nanosheets anchored on C/Cu porous microspheres as high-performance anode materials for lithium-ion battery[J]. Science China Materials, 2023, 66(12): 4575-4586. |
| [4] | ZHAO W, CHOI W, YOON W S. Nanostructured electrode materials for rechargeable lithium-ion batteries[J]. Journal of Electrochemical Science and Technology, 2020, 11(3): 195-219. |
| [5] | KIM Y, UM J H, LEE H, et al. Additional lithium storage on dynamic electrode surface by charge redistribution in inactive Ru metal[J]. Small, 2020, 16(1): 1905868. |
| [6] | YANG L, ZHU X, ZHOU Q H, et al. Herringbone packed contorted aromatics with ordered three-dimensional channels as fast-charging and low-temperature lithium-ion battery anodes[J]. Journal of Materials Chemistry A, 2024, 12(12): 7005-7014. |
| [7] | LIU Z, FU H Y, GAO B, et al. In-situ synthesis of Fe2O3/rGO using different hydrothermal methods as anode materials for lithium-ion batteries[J]. Reviews on Advanced Materials Science, 2020, 59(1): 477-486. |
| [8] | YAO J H, YANG Y D, LI Y W, et al. Interconnected α-Fe2O3 nanoparticles prepared from leaching liquor of tin ore tailings as anode materials for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 855: 157288. |
| [9] | WANG J T, YANG X J, WANG Y B, et al. Rational design and synthesis of sandwich-like reduced graphene oxide/Fe2O3/N-doped carbon nanosheets as high-performance anode materials for lithium-ion batteries[J]. Chemical Engineering Science, 2021, 231: 116271. |
| [10] | BAN Q F, LIU Y Y, LIU P Y, et al. Hierarchically nanostructured carbon nanotube/polyimide/mesoporous Fe2O3 nanocomposite for organic-inorganic lithium-ion battery anode[J]. Microporous and Mesoporous Materials, 2022, 335: 111803. |
| [11] | GÓMEZ-URBANO J L, MORENO-FERNÁNDEZ G, ARNAIZ M, et al. Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors[J]. Carbon, 2020, 162: 273-282. |
| [12] | QIU D P, KANG C H, LI M, et al. Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage[J]. Carbon, 2020, 162: 595-603. |
| [13] | GANGULY D, RAMAPRABHU S. Facile synthesis and electrochemical properties of α-Fe2O3 nanoparticles/etched carbon nanotube composites as anode for lithium-ion batteries[J]. Materials Chemistry and Physics, 2021, 267: 124664. |
| [14] | MA J, KONG Y, LIU S C, et al. Flexible phosphorus-doped graphene/metal-organic framework-derived porous Fe2O3 anode for lithium-ion battery[J]. ACS Applied Energy Materials, 2020, 3(12): 11900-11906. |
| [15] | WU S T, JIN Y C, WANG D, et al. Fe2O3/carbon derived from peanut shell hybrid as an advanced anode for high performance lithium ion batteries[J]. Journal of Energy Storage, 2023, 68: 107731. |
| [16] | YU K F, WANG J J, WANG X F, et al. Sustainable application of biomass by-products: corn straw-derived porous carbon nanospheres using as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics, 2020, 243: 122644. |
| [17] | FROMM O, HECKMANN A, RODEHORST U C, et al. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 2018, 128: 147-163. |
| [18] | DU Y F, SUN G H, LI Y, et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 2021, 178: 243-255. |
| [19] | KIETISIRIROJANA N, TUNKASIRI T, PENGPAT K, et al. Synthesis of mesoporous carbon powder from gold beard grass pollen for use as an anode for lithium-ion batteries[J]. Microporous and Mesoporous Materials, 2022, 331: 111565. |
| [20] | ZHU L K, LUO B, MEN L J, et al. A green synthesis strategy for lithium/sodium-ion battery anodes: morphology and structure engineering in biochar to boost comprehensive electrochemical performance[J]. Green Chemistry, 2025, 27(7): 2078-2091. |
| [21] |
XU K Q, LI Y S, XIONG J W, et al. Activated amorphous carbon with high-porosity derived from camellia pollen grains as anode materials for lithium/sodium ion batteries[J]. Frontiers in Chemistry, 2018, 6: 366.
DOI PMID |
| [22] | SUN X L, WANG X H, FENG N, et al. A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 181-185. |
| [23] | XU R X, ZHAO Y P, LIU G H, et al. N/O co-doped porous interconnected carbon nanosheets from the co-hydrothermal treatment of soybean stalk and nickel nitrate for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2020, 558: 211-219. |
| [24] |
BALAN A P, RADHAKRISHNAN S, WOELLNER C F, et al. Exfoliation of a non-van der Waals material from iron ore hematite[J]. Nature Nanotechnology, 2018, 13(7): 602-609.
DOI PMID |
| [25] | SUN M C, SUN M F, YANG H X, et al. Porous Fe2O3 nanotubes as advanced anode for high performance lithium ion batteries[J]. Ceramics International, 2017, 43(1): 363-367. |
| [26] | CHEN J S, ZHU T, YANG X H, et al. Top-down fabrication of α-Fe2O3 single-crystal nanodiscs and microparticles with tunable porosity for largely improved lithium storage properties[J]. Journal of the American Chemical Society, 2010, 132(38): 13162-13164. |
| [27] | ZHANG C L, JIANG Z H, LU B R, et al. MoS2 nanoplates assembled on electrospun polyacrylonitrile-metal organic framework-derived carbon fibers for lithium storage[J]. Nano Energy, 2019, 61: 104-110. |
| [28] | ZHANG X, ZHOU J, ZHENG Y Y, et al. MoSe2-CoSe2/N-doped graphene aerogel nanocomposites with high capacity and excellent stability for lithium-ion batteries[J]. Journal of Power Sources, 2019, 439: 227112. |
| [29] | ZHANG X, LIU H H, PETNIKOTA S, et al. Electrospun Fe2O3-carbon composite nanofibers as durable anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(28): 10835-10841. |
| [30] | WANG Y Z, HAN J S, GU X X, et al. Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage[J]. Journal of Materials Chemistry A, 2017, 5(35): 18737-18743. |
| [31] | 张钟元. 氧化铁基纳米复合材料合成及其嵌/脱锂性能[D]. 大连: 大连理工大学, 2021. |
| ZHANG Z Y. Synthesis of iron-oxide-based nanocomposites and the lithium intercalation/deintercalation performances[D]. Dalian: Dalian University of Technology, 2021 (in Chinese). | |
| [32] |
PIAO Y Z, KIM H S, SUNG Y E, et al. Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries[J]. Chemical Communications, 2010, 46(1): 118-120.
DOI PMID |
| [33] | ZHANG L H, WEI T, JIANG Z M, et al. Electrostatic interaction in electrospun nanofibers: double-layer carbon protection of CoFe2O4 nanosheets enabling ultralong-life and ultrahigh-rate lithium ion storage[J]. Nano Energy, 2018, 48: 238-247. |
| [34] | SUBRAMANIYAM C M, SRINIVASAN N R, TAI Z X, et al. Self-assembled porous carbon microparticles derived from halloysite clay as a lithium battery anode[J]. Journal of Materials Chemistry A, 2017, 5(16): 7345-7354. |
| [1] | 张琳, 蔡强浩, 代汉文, 汪燕鸣, 王飞. 纳米空心立方体ZnMn2O4/rGO复合材料的储锂性能[J]. 人工晶体学报, 2025, 54(6): 1068-1077. |
| [2] | 江晓雪, 宋飞, 胡广宇, 许锦铧, 李翠芹. 锂盐添加剂和成膜添加剂对锂电池低温电化学性能的影响[J]. 人工晶体学报, 2025, 54(1): 146-157. |
| [3] | 胡绪照, 许雪艳, 徐兵, 廖生温, 张佳奇, 夏爱林. 热处理针铁矿的结构与形貌演化[J]. 人工晶体学报, 2025, 54(1): 165-174. |
| [4] | 刘雨秋, 杨娟, 李欣, 龙欢, 吴贤文, 吴湘思. 水系锌离子电池LaF3涂层对锌负极的改性研究[J]. 人工晶体学报, 2024, 53(6): 1078-1085. |
| [5] | 张万贺, 胡建英, 周涛, 吕怡婷, 王克良. 镁和铝离子电池负极材料Nb2N的第一性原理研究[J]. 人工晶体学报, 2023, 52(8): 1451-1457. |
| [6] | 望军, 赵雨, 郑毅, 张均, 刘晓燕. 锂离子电池柔性负极材料CoO纳米线@C/碳布复合材料[J]. 人工晶体学报, 2023, 52(6): 1154-1160. |
| [7] | 王俊, 葛庆, 刘帅呈, 马博杰, 刘倬良, 翟浩, 林枫, 江晨, 刘昊, 刘凯, 杨一粟, 王琦, 黄永清, 任晓敏. 用于单片集成的硅基外延Ⅲ-Ⅴ族量子阱和量子点激光器研究[J]. 人工晶体学报, 2023, 52(5): 766-782. |
| [8] | 罗诗健, 熊子龙, 杨凤华, 陈前林, 李翠芹. 快离子导体Li1.5Y0.5Zr1.5(PO4)3包覆层对富镍三元正极材料电化学性能的影响[J]. 人工晶体学报, 2022, 51(7): 1257-1269. |
| [9] | 刘琳琳, 刘杰, 陈前林, 罗诗键, 李翠芹. LiZr2(PO4)3包覆对高镍三元正极材料结构及电化学性能的影响[J]. 人工晶体学报, 2022, 51(4): 695-703. |
| [10] | 许琳琳, 于海英, 张永锋. 多孔硅制备研究进展及其在锂离子电池方面的应用[J]. 人工晶体学报, 2022, 51(11): 1983-1993. |
| [11] | 王皓逸, 邹昱凌, 孟奇, 夏广辉, 林艳, 张英杰. 退役三元锂离子电池正极材料高效清洁回收技术研究进展[J]. 人工晶体学报, 2021, 50(6): 1158-1169. |
| [12] | 周阳阳, 张子英, 翁滢. ZnO超细纳米线阵列的制备及其电化学性能[J]. 人工晶体学报, 2021, 50(3): 536-541. |
| [13] | 望军, 赵雨, 范保艳, 张均, 邢安, 刘晓燕. 锂离子电池CoO多孔纳米片阵列/碳布柔性负极材料[J]. 人工晶体学报, 2021, 50(11): 2150-2155. |
| [14] | 刘梦宁, 李晓强. 退役磷酸铁锂电池的梯次利用和正极材料回收方法现状[J]. 人工晶体学报, 2021, 50(11): 2192-2203. |
| [15] | 覃爱苗;郑爽;魏立学;刘志森. 生物质炭的杂元素掺杂及其在电极中的应用[J]. 人工晶体学报, 2020, 49(7): 1326-1335. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS