
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1622-1632.DOI: 10.16553/j.cnki.issn1000-985x.2025.0069
姚函妤1,2(
), 陈楷1, 易雨薇1, 周延琪1, 李霜1, 唐群涛3
收稿日期:2025-04-09
出版日期:2025-09-20
发布日期:2025-09-23
作者简介:姚函妤(1991—),女,山西省人,博士,副教授。E-mail:hyyao@njit.edu.en
基金资助:
YAO Hanyu1,2(
), CHEN Kai1, YI Yuwei1, ZHOU Yanqi1, LI Shuang1, TANG Quntao3
Received:2025-04-09
Online:2025-09-20
Published:2025-09-23
摘要: NiO作为一种新型宽禁带空穴传输材料,具有优异的光学、电学特性。本文采用溶胶凝胶法制备Er掺杂NiO薄膜,通过改变退火温度和Er掺杂浓度,对比探究热处理对NiO薄膜结构与光电特性的影响。研究表明,随着退火温度从300 ℃提升至600 ℃,NiO薄膜结晶性与可见光透过率增加,在500 ℃退火温度下具有最低的电阻率;随着Er掺杂浓度从2%提升至10%,NiO薄膜缺陷减少,晶粒尺寸增加,上转换发光性能呈先增加后降低的趋势,上转换和电学性能在Er掺杂量为8%时性能最佳。本研究优化制备的8% Er掺杂NiO薄膜,在500 ℃退火2 h具有最高上转换发光强度,最低电阻率为177.6 Ω·cm,最高迁移率0.48 cm2·V-1·s-1。本文从光谱转换和空穴传输层材料性能优化两个方面,为提升钙钛矿和硅基太阳电池光电转换效率的研究提供部分理论和实验依据。
中图分类号:
姚函妤, 陈楷, 易雨薇, 周延琪, 李霜, 唐群涛. 热处理温度与Er掺杂量对氧化镍薄膜光学与电学特性的影响[J]. 人工晶体学报, 2025, 54(9): 1622-1632.
YAO Hanyu, CHEN Kai, YI Yuwei, ZHOU Yanqi, LI Shuang, TANG Quntao. Effects of Heat Treatment Temperature and Er Doping Amount on Photoelectric Properties of Nickel Oxide Thin Films[J]. Journal of Synthetic Crystals, 2025, 54(9): 1622-1632.
| Annealing temperature/℃ | 2θ/(°) | FWHM/(°) | Grain size/nm |
|---|---|---|---|
| 300 | 43.21 | 0.792 | 10.39 |
| 400 | 43.19 | 0.684 | 12.03 |
| 500 | 43.27 | 0.532 | 15.47 |
| 600 | 43.29 | 0.509 | 16.16 |
表1 不同退火温度NiO样品的(200)晶面XRD衍射峰数据及谢乐公式计算的晶粒尺寸
Table 1 XRD diffraction peak data of (200) plane and crystallite sizes calculated by Scherrer formula for NiO samples at different annealing temperatures
| Annealing temperature/℃ | 2θ/(°) | FWHM/(°) | Grain size/nm |
|---|---|---|---|
| 300 | 43.21 | 0.792 | 10.39 |
| 400 | 43.19 | 0.684 | 12.03 |
| 500 | 43.27 | 0.532 | 15.47 |
| 600 | 43.29 | 0.509 | 16.16 |
图2 不同退火温度下NiO薄膜的SEM照片。(a)样品1-1;(b)样品1-2;(c)样品1-3;(d)样品1-4;(e)未退火样品(截面照片);(f)样品1-3(截面照片)
Fig.2 SEM images of NiO thin films at different annealing temperatures. (a) Sample 1-1; (b) sample 1-2; (c) sample 1-3; (d) sample 1-4; (e) unannealed sample (cross-section image); (f) sample 1-3 (cross-section image)
图3 不同退火温度下纯 NiO 薄膜的光学透射率(a)与光学带隙计算图谱(b)
Fig.3 Optical transmission curves (a) and optical band gap calculation (b) of pure NiO thin films at different annealing temperatures
| Annealing temperature/℃ | 300 | 400 | 500 | 600 |
|---|---|---|---|---|
| Resistivity /(Ω·cm) | 585.5 | 530.5 | 370.6 | 433.4 |
| Mobility /(cm2·V-1·s-1) | 0.13 | 0.16 | 0.22 | 0.15 |
| Carrier concentration/cm-3 | 9.8×1015 | 2.2×1016 | 2.7×1016 | 7.6×1016 |
表2 不同退火温度下NiO薄膜电阻率、迁移率、自由电子浓度测试结果
Table 2 Test results of resistivity, mobility and free electron concentration of NiO thin films at different annealing temperatures
| Annealing temperature/℃ | 300 | 400 | 500 | 600 |
|---|---|---|---|---|
| Resistivity /(Ω·cm) | 585.5 | 530.5 | 370.6 | 433.4 |
| Mobility /(cm2·V-1·s-1) | 0.13 | 0.16 | 0.22 | 0.15 |
| Carrier concentration/cm-3 | 9.8×1015 | 2.2×1016 | 2.7×1016 | 7.6×1016 |
| Sample | Annealing temperature/℃ | Grain size/nm | 100~800 nmmean transmittance | Optical band gap/eV | Resistivity/(Ω·cm) | Ni3+/Ni2+ |
|---|---|---|---|---|---|---|
| 1-1 | 300 | 10.39 | 72.8% | 3.68 | 585.5 | 1.58 |
| 1-2 | 400 | 12.03 | 77.5% | 3.62 | 530.5 | — |
| 1-3 | 500 | 15.47 | 79.6% | 3.64 | 370.6 | 2.71 |
| 1-4 | 600 | 16.16 | 81.3% | 3.64 | 433.4 | — |
表3 不同退火温度下纯NiO薄膜性能总结
Table 3 Summary of the properties of pure NiO thin films at different annealing temperatures
| Sample | Annealing temperature/℃ | Grain size/nm | 100~800 nmmean transmittance | Optical band gap/eV | Resistivity/(Ω·cm) | Ni3+/Ni2+ |
|---|---|---|---|---|---|---|
| 1-1 | 300 | 10.39 | 72.8% | 3.68 | 585.5 | 1.58 |
| 1-2 | 400 | 12.03 | 77.5% | 3.62 | 530.5 | — |
| 1-3 | 500 | 15.47 | 79.6% | 3.64 | 370.6 | 2.71 |
| 1-4 | 600 | 16.16 | 81.3% | 3.64 | 433.4 | — |
| Er doping concentration/% | 2θ/(°) | FWHM/(°) | Grain size/nm |
|---|---|---|---|
| 2 | 43.52 | 0.529 | 15.57 |
| 5 | 43.48 | 0.489 | 16.84 |
| 8 | 37.21 | 0.502 | 16.08 |
| 10 | 37.26 | 0.493 | 16.37 |
表4 不同掺Er浓度NiO样品的XRD择优取向衍射峰数据及谢乐公式计算晶粒尺寸
Table 4 XRD diffraction peak data of preferred orientation and crystallite sizes calculated by Scherrer formula for NiO samples with different Er doping concentrations
| Er doping concentration/% | 2θ/(°) | FWHM/(°) | Grain size/nm |
|---|---|---|---|
| 2 | 43.52 | 0.529 | 15.57 |
| 5 | 43.48 | 0.489 | 16.84 |
| 8 | 37.21 | 0.502 | 16.08 |
| 10 | 37.26 | 0.493 | 16.37 |
图7 不同Er掺杂浓度下NiO薄膜的光学透射率(a)与光学带隙计算图谱(b)
Fig.7 Optical transmission curves (a) and optical band gap calculation (b) of different Er doping concentrations
图8 (a)980 nm激光照射下样品的上转换发光光谱;(b)样品的上转换发光强度提升倍数
Fig.8 (a) Up-conversion luminescence spectra of the sample under 980 nm laser irradiation; (b) the up-conversion luminescence intensity enhancement factor of the sample
| Er doping concentration/% | 0 | 2 | 5 | 8 | 10 |
|---|---|---|---|---|---|
| Resistivity/(Ω·cm) | 370.6 | 274.8 | 211.5 | 177.6 | 243.4 |
| Mobility/(cm2·V-1·s-1) | 0.22 | 0.34 | 0.40 | 0.48 | 0.31 |
| Carrier concentration/cm-3 | 2.7×1016 | 2.1×1016 | 3.0×1016 | 3.7×1016 | 3.9×1016 |
表5 不同掺杂浓度下NiO薄膜电阻率、迁移率、自由电子浓度测试结果
Table 5 Test results of resistivity, mobility and free electron concentration of NiO thin films of different doping concentrations
| Er doping concentration/% | 0 | 2 | 5 | 8 | 10 |
|---|---|---|---|---|---|
| Resistivity/(Ω·cm) | 370.6 | 274.8 | 211.5 | 177.6 | 243.4 |
| Mobility/(cm2·V-1·s-1) | 0.22 | 0.34 | 0.40 | 0.48 | 0.31 |
| Carrier concentration/cm-3 | 2.7×1016 | 2.1×1016 | 3.0×1016 | 3.7×1016 | 3.9×1016 |
图9 不同Er掺杂浓度NiO薄膜的Ni 2p轨道XPS图。(a)2%;(b)5%;(c)8%;(d)2%掺Er浓度NiO的Er 4d轨道XPS图
Fig.9 XPS of Ni 2p in NiO thin films of different Er doping concentrations. (a) 2%; (b) 5%; (c) 8%; (d) XPS of Er 4d in 2% Er-doped NiO
| Sample | Er doping concentration/% | Grain size/nm | 400~800 nm mean transmittance/% | Optical band gap/eV | Resistivity/(Ω·cm) | Upconversion luminescence enhancement factor/(G1/G2/R) | Ni3+/Ni2+ |
|---|---|---|---|---|---|---|---|
| 1-3 | 0 | 15.47 | 79.6 | 3.64 | 370.6 | — | 2.71 |
| 2-1 | 2 | 15.57 | 78.9 | 3.59 | 274.8 | 1/1/1 | 2.88 |
| 2-2 | 5 | 16.84 | 80.1 | 3.62 | 211.5 | 1.8/1.5/2 | 2.97 |
| 2-3 | 8 | 16.08 | 82.3 | 3.64 | 177.6 | 12/9/36 | 3.01 |
| 2-4 | 10 | 16.37 | 77.6 | 3.64 | 243.4 | 9/8/23 | — |
表6 四种退火温度下纯NiO薄膜性能总结
Table 6 Summary of the properties of pure NiO thin films at different annealing temperatures
| Sample | Er doping concentration/% | Grain size/nm | 400~800 nm mean transmittance/% | Optical band gap/eV | Resistivity/(Ω·cm) | Upconversion luminescence enhancement factor/(G1/G2/R) | Ni3+/Ni2+ |
|---|---|---|---|---|---|---|---|
| 1-3 | 0 | 15.47 | 79.6 | 3.64 | 370.6 | — | 2.71 |
| 2-1 | 2 | 15.57 | 78.9 | 3.59 | 274.8 | 1/1/1 | 2.88 |
| 2-2 | 5 | 16.84 | 80.1 | 3.62 | 211.5 | 1.8/1.5/2 | 2.97 |
| 2-3 | 8 | 16.08 | 82.3 | 3.64 | 177.6 | 12/9/36 | 3.01 |
| 2-4 | 10 | 16.37 | 77.6 | 3.64 | 243.4 | 9/8/23 | — |
| [1] | ANOOP K M, AHIPA T N. Recent advancements in the hole transporting layers of perovskite solar cells[J]. Solar Energy, 2023, 263: 111937. |
| [2] | NANDI P, PARK H, SHIN S, et al. NiO as hole transporting layer for inverted perovskite solar cells: a study of X-ray photoelectron spectroscopy[J]. Advanced Materials Interfaces, 2024, 11(8): 2300751. |
| [3] | 宫联国. 氮掺杂 NiO 薄膜的电化学性质研究[D]. 山西: 太原理工大学, 2021. |
| GONG L G. Study on the electrochemical properties of nitrogen-doped NiO films [D]. Shanxi: Taiyuan University of Technology, 2021 (in Chinese). | |
| [4] | ZHANG C P, WEI K, HU J F, et al. A review on organic hole transport materials for perovskite solar cells: structure, composition and reliability[J]. Materials Today, 2023, 67: 518-547. |
| [5] | ZHANG S, LU Y R, DING Q J, et al. MOF derived NiO thin film formed p-n heterojunction with BiVO4 photoelectrode for enhancement of PEC performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130282. |
| [6] | 朱静怡, 丁馨, 张晓渝, 等. 稀土元素 Er 掺杂提高 WSe2纳米薄膜的光电特性[J]. 微纳电子技术, 2020, 36(6): 874-878. |
| ZHU J Y, DING X, ZHANG X Y, et al. Rare earth element Er doping improves the photoelectric properties of WSe2 nanofilms[J]. Micro-nano electronic technology, 2020, 36(6): 874-878 (in Chinese). | |
| [7] | 胡丹丹. NiO/SiC异质结的制备及其光电特性的研究[D]. 西安: 西安理工大学, 2018. |
| HU D D. Preparation and photoelectric properties of NiO/SiC heterojunction[D]. Xi'an: Xi'an University of Technology, 2018 (in Chinese). | |
| [8] | CAI X, HU T, HOU H, et al. A review for nickel oxide hole transport layer and its application in halide perovskite solar cells[J]. Materials Today Sustainability, 2023, 23: 100438. |
| [9] | ZHANG Y, SONG D P, HUI Z Z, et al. Unexpected large remnant polarization in Sn-doped Bi4Ti3O12 ferroelectric film by chemical solution deposition[J]. Journal of Advanced Dielectrics, 2024: 2450027. |
| [10] | HUANG W H, HE S, HAO A Z, et al. Structural phase transition, electrical and photoluminescent properties of Pr3+-doped (1-x)Na0.5Bi0.5TiO3- x SrTiO3 lead-free ferroelectric thin films[J]. Journal of the European Ceramic Society, 2018, 38(5): 2328-2334. |
| [11] | AZHAR M, NOWSHERWAN G A, IQBAL M A, et al. Morphological, photoluminescence, and electrical measurements of rare-earth metal-doped cadmium sulfide thin films[J]. ACS Omega, 2023, 8(39): 36321-36332. |
| [12] | HAUNSBHAVI K, ALAGARASAN D, SHIVARAMU N J, et al. Nanostructured NiO thin film for ammonia sensing at elevated temperatures[J]. Journal of Electronic Materials, 2022, 51(11): 6356-6368. |
| [13] | TIMOSHNEV S, KAZAKIN A, SHUBINA K, et al. Annealing temperature effect on the physical properties of NiO thin films grown by DC magnetron sputtering[J]. Advanced Materials Interfaces, 2024, 11(9): 2300815. |
| [14] | WEI H M, WU Y Q. Study on the up-conversion luminescence and conductivity behavior of p-type NiO:Yb, Er thin films[J]. Materials, 2023, 16(13): 4637. |
| [15] | 符文迪. NiO 基透明 pn 结的制备及其光电效应的研究[D]. 浙江: 浙江理工大学, 2022. |
| FU W D. Preparation of NiO-based transparent pn junction and its photoelectric effect[D]. Zhejiang: Zhejiang University of Technology, 2022 (in Chinese). | |
| [16] | 王 新, 谭封印, 丛凡超, 等. Mg掺杂对NiO基薄膜能带调控作用[J]. 吉林师范大学学报(自然科学版), 2023, 44(3): 11-17. |
| WANG X, TAN F Y, CONG F C, et al. The regulatory effect of Mg-doping on the energy band of NiO based thin films[J]. Journal of Jilin Normal University (Natural Science Edition), 2023, 44(3): 11-17 (in Chinese). | |
| [17] |
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chemical Reviews, 2004, 104(1): 139-173.
DOI PMID |
| [18] | 于晓晨, 李华健, 高博扬, 等. Er3+/Yb3+共掺杂Ca0.5Gd(WO4)2荧光粉的发光性能和温度特性[J]. 材料导报, 2022, 36 (18): 21050128-6. |
| YU X C, LI H J, GAO B Y, et al. Luminescence properties and temperature characteristics of Er3+/Yb3+ co-doped Ca0.5Gd(WO4)2 phosphors[J]. Material introduction, 2022, 36(18): 21050128-6 (in Chinese). | |
| [19] | ZHANG C, SHI Y L, LU K L, et al. Ultrapure single-band red upconversion luminescence in Er3+ doped sensitizer-rich ytterbium oxide transparent ceramics for solid-state lighting and temperature sensing[J]. Optics Express, 2023, 31(18): 28963-28978. |
| [20] | ANANTHI S, KAVITHA M, BALAMURUGAN A, et al. Synthesis, analysis and characterization of camellia sinensis mediated synthesis of NiO nanoparticles for ethanol gas sensor applications[J]. Sensors and Actuators B: Chemical, 2023, 387: 133742. |
| [21] | FELDL J, BUDDE M, TSCHAMMER C, et al. Magnetic characteristics of epitaxial NiO films studied by Raman spectroscopy[J]. Journal of Applied Physics, 2020, 127(23): 235105. |
| [22] | PURUSHOTHAMAN K K, MURALIDHARAN G. The effect of annealing temperature on the electrochromic properties of nanostructured NiO films[J]. Solar Energy Materials and Solar Cells, 2009, 93(8): 1195-1201. |
| [23] | 罗启仁, 刘昌, 吴昊. ALD法制备Li掺杂NiO x 作为HTL提升PSC性能[J]. 半导体技术, 2024, 49 (10): 885-892+898. |
| LUO Q R, LIU C, WU H. ALD method to prepare Li-doped NiO x as HTL to improve PSC performance[J]. Semiconductor technology, 2024, 49(10): 885-892+898 (in Chinese). | |
| [24] | ALIDOUST N, TOROKER M C, KEITH J A, et al. Significant reduction in NiO band gap upon formation of Li x Ni1- x O alloys: applications to solar energy conversion[J]. ChemSusChem, 2014, 7(1): 195-201. |
| [25] | OSORIO-GUILLÉN J, LANY S, BARABASH S V, et al. Nonstoichiometry as a source of magnetism in otherwise nonmagnetic oxides: magnetically interacting cation vacancies and their percolation[J]. Physical Review B, 2007, 75(18): 184421. |
| [26] | NANDY S, SAHA B, MITRA M K, et al. Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1- x O films by DC sputtering[J]. Journal of Materials Science, 2007, 42(14): 5766-5772. |
| [27] | KIM K S, WINOGRAD N. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment[J]. Surface Science, 1974, 43(2): 625-643. |
| [28] | RATCLIFF E L, MEYER J, STEIRER K X, et al. Evidence for near-surface NiOOH species in solution-processed NiO x selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics[J]. Chemistry of Materials, 2011, 23(22): 4988-5000. |
| [29] | BOUKHARI JAL, KHALAF A, SAYED HASSAN R, et al. Structural, optical and magnetic properties of pure and rare earth-doped NiO nanoparticles[J]. Applied Physics A, 2020, 126(5): 323. |
| [30] | GAO C Y, LI Z C, PENG D C, et al. Comparative investigation of the effect of rare earth elements (Y, Sm and La) in NiO-based NTC thermistors with high temperature sensitivity[J]. Surfaces and Interfaces, 2024, 55: 105398. |
| [31] | HAUNSBHAVI K, KUMAR K D A, UBAIDULLAH M, et al. The effect of rare-earth element (Gd, Nd, La) doping of NiO films on UV photodetector[J]. Physica Scripta, 2022, 97(5): 055815. |
| [32] | VETRONE F, BOYER J C, CAPOBIANCO J A, et al. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+ [J]. Chemistry of Materials, 2003, 15(14): 2737-2743. |
| [33] | VETRONE F, BOYER J C, CAPOBIANCO J A, et al. NIR to visible upconversion in nanocrystalline and bulk Lu2O3:Er3+ [J]. The Journal of Physical Chemistry B, 2002, 106(22): 5622-5628. |
| [34] | CHEN X F, XU L, CHEN C, et al. Rare earth ions doped NiO x hole transport layer for efficient and stable inverted perovskite solar cells[J]. Journal of Power Sources, 2019, 444: 227267. |
| [35] | ZHANG K H L, XI K, BLAMIRE M G, et al. P-type transparent conducting oxides[J]. Journal of Physics Condensed Matter, 2016, 28(38): 383002. |
| [1] | 宋昱杉, 陈浩, 李松, 杨明超, 杨松泉, 杨森, 周磊簜, 耿莉, 郝跃, 欧阳晓平. 低温超临界流体工艺对退化的Ni/β-Ga2O3肖特基势垒二极管电学性能的影响[J]. 人工晶体学报, 2025, 54(9): 1574-1583. |
| [2] | 窦瑛, 王英民, 高彦昭, 程红娟. 硒添加量对硒化镉单晶电学和光学性能的影响研究[J]. 人工晶体学报, 2025, 54(8): 1403-1409. |
| [3] | 陈思贤, 徐乐, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. I-掺杂Cs3Bi2Br9晶体的生长及其光学性能调控[J]. 人工晶体学报, 2025, 54(7): 1282-1288. |
| [4] | 张飞洋, 闫锋, 娄岳, 李波江, 李杰. Co掺杂Na0.5Bi4.5Ti4O15铋层状无铅压电陶瓷制备及电学性能研究[J]. 人工晶体学报, 2025, 54(6): 1061-1067. |
| [5] | 李鹏程, 周军, 王伟刚, 吴坤尧, 李兆. Li2Mg3TiO6:Eu3+红色荧光粉的合成及其在白光LED上的应用[J]. 人工晶体学报, 2025, 54(4): 643-651. |
| [6] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [7] | 孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370. |
| [8] | 胡绪照, 许雪艳, 徐兵, 廖生温, 张佳奇, 夏爱林. 热处理针铁矿的结构与形貌演化[J]. 人工晶体学报, 2025, 54(1): 165-174. |
| [9] | 郑权, 刘学超, 王浩, 朱新峰, 潘秀红, 陈锟, 邓伟杰, 汤美波, 徐浩, 吴鸿辉, 金敏. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
| [10] | 董玉娟, 刘召江, 朱绮睿. 黄光发射纯Zn3V2O8荧光粉的制备及光学性能研究[J]. 人工晶体学报, 2024, 53(8): 1416-1421. |
| [11] | 凌昊, 徐乐, 陈思贤, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. 溶液法生长大尺寸CsCu2I3钙钛矿单晶及其光学性能研究[J]. 人工晶体学报, 2024, 53(7): 1121-1126. |
| [12] | 刘帅, 宋立辉, 杨德仁, 皮孝东. 4H-SiC基功率器件的high-k栅介质材料研究进展[J]. 人工晶体学报, 2024, 53(12): 2027-2042. |
| [13] | 王坤元, 梁小燕, 闵嘉华, 张继军. 原位热处理对碲锌镉晶体质量和性能的影响[J]. 人工晶体学报, 2024, 53(12): 2079-2084. |
| [14] | 吉浩浩, 陈念江, 章健, 杨彧涵, 刘禹, 王士维. 3D打印钇铝石榴石基激光陶瓷研究进展[J]. 人工晶体学报, 2024, 53(11): 1840-1867. |
| [15] | 黄秋凤, 邓志强, 陈剑, 郭旺, 邓种华, 刘著光, 黄集权. Cr掺杂YAG透明陶瓷的价态调控及光学性能研究[J]. 人工晶体学报, 2024, 53(11): 1909-1917. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS