
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1574-1583.DOI: 10.16553/j.cnki.issn1000-985x.2025.0065
宋昱杉1(
), 陈浩1, 李松1, 杨明超1, 杨松泉1, 杨森1, 周磊簜1(
), 耿莉1(
), 郝跃2, 欧阳晓平3
收稿日期:2025-03-31
出版日期:2025-09-20
发布日期:2025-09-23
通信作者:
周磊簜,耿莉
作者简介:宋昱杉(1997—),男,河北省人,博士研究生。E-mail:yushansong@stu.xjtu.edu.cn
基金资助:
SONG Yushan1(
), CHEN Hao1, LI Song1, YANG Mingchao1, YANG Songquan1, YANG Sen1, ZHOU Leidang1(
), GENG Li1(
), HAO Yue2, OUYANG Xiaoping3
Received:2025-03-31
Online:2025-09-20
Published:2025-09-23
Contact:
ZHOU Leidang, GENG Li
摘要: 先进半导体工艺是提升β-Ga2O3基器件电学性能和修复其在工作环境中性能退化效应的关键技术。近年来,低温超临界流体工艺在降低半导体器件界面态、修复刻蚀工艺损伤和提高器件稳定性等方面展现出显著优势。本研究采用130 ℃和20 MPa的N2O流体,对暴露在空气环境中导致电学性能退化的Ni/β-Ga2O3肖特基势垒二极管(SBDs)进行处理,通过电流-电压和电容-电压特性表征,探究低温超临界流体(SCF)处理前、后电学性能退化的SBDs器件导通特性和击穿特性的变化机理。研究结果表明:经SCF处理的SBDs正向饱和电流密度的升高伴随着体电子陷阱的减少和串联电阻的降低;肖特基势垒高度的提高和耗尽层的展宽有效抑制了电子隧穿,进而导致了漏电流的减小。此外,研究表明,退化后的Ni/β-Ga2O3 SBDs的金半接触界面态密度未受到SCF处理的显著影响,具有大时间常数的界面缺陷也未对肖特基势垒高度产生明显影响。本研究为低温超临界流体工艺在优化β-Ga2O3基器件性能方面的应用提供了重要的实验依据和理论支持。
中图分类号:
宋昱杉, 陈浩, 李松, 杨明超, 杨松泉, 杨森, 周磊簜, 耿莉, 郝跃, 欧阳晓平. 低温超临界流体工艺对退化的Ni/β-Ga2O3肖特基势垒二极管电学性能的影响[J]. 人工晶体学报, 2025, 54(9): 1574-1583.
SONG Yushan, CHEN Hao, LI Song, YANG Mingchao, YANG Songquan, YANG Sen, ZHOU Leidang, GENG Li, HAO Yue, OUYANG Xiaoping. Effect of Low-Temperature Supercritical Fluid Process on Electrical Performance of Degraded Ni/β-Ga2O3 Schottky Barrier Diodes[J]. Journal of Synthetic Crystals, 2025, 54(9): 1574-1583.
图2 W/O(a)、SCF-1 h(b)和SCF-2 h(c)条件下性能退化的Ni/β-Ga2O3 SBDs在负偏压下的变频C-V曲线和1/C2-V曲线,以及三种条件的高频曲线对比图(d)
Fig.2 Frequency-dependent C-V curves and 1/C2-V curves at reverse bias of degraded Ni/β-Ga2O3 SBDs for W/O (a), SCF-1 h (b) and SCF-2 h (c) conditions, and high-frequency curves for the three conditions (d)
图3 从低温超临界流体处理前、后退化的Ni/β-Ga2O3 SBDs的1/C2-V曲线中提取的不同频率下的净载流子浓度
Fig.3 Extracted net carrier concentration at different frequencies from 1/C2-V curves of degraded Ni/β-Ga2O3 SBDs before and after low-temperature supercritical fluid treatment
图4 根据C-V特性曲线提取的低温超临界流体处理前后退化的Ni/β-Ga2O3 SBDs肖特基势垒高度的频率相关性
Fig.4 Frequency-dependent Schottky barrier height obtained from the C-V curves of degraded Ni/β-Ga2O3 SBDs before and after low-temperature supercritical fluid treatment
图5 W/O(a)、SCF-1 h(b)和SCF-2 h(c)条件下退化Ni/β-Ga2O3 SBDs在正偏压下的变频C-V曲线和G/-V曲线,以及器件界面态密度随频率的变化(d)
Fig.5 Frequency-dependent C-V curves and G/-V curves at forward bias of degraded Ni/β-Ga2O3 SBDs for W/O (a), SCF-1 h (b) and SCF-2 h (c) conditions, and interface state density as a function of the frequency (d)
图6 不同条件下Ni/β-Ga2O3 SBDs的正向J-V特性曲线、比导通电阻(a),以及开启电压、理想因子和肖特基势垒高度(b)
Fig.6 Forward J-V curves, specific on-resistance (a), threshold voltage, ideality factor and Schottky barrier height (b) of Ni/β-Ga2O3 SBDs under different conditions
图7 通过Norde方法求解的不同条件下Ni/β-Ga2O3 SBDs的串联电阻(a)和肖特基势垒高度(b)
Fig.7 Series resistance (a) and Schottky barrier height (b) of Ni/β-Ga2O3 SBDs under different conditions obtained from the Norde's method
图8 不同条件下Ni/β-Ga2O3 SBDs的反向J-V曲线(a)和Fowler-Nordheim函数(b)
Fig.8 Reverse J-V characteristics (a) and Fowler-Nordheim plot (b) of Ni/β-Ga2O3 SBDs under different conditions
| [1] | PEARTON S J, REN F, TADJER M, et al. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS[J]. Journal of Applied Physics, 2018, 124(22): 220901. |
| [2] | XUE H W, HE Q M, JIAN G Z, et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application[J]. Nanoscale Research Letters, 2018, 13(1): 290. |
| [3] | SASAKI K. Prospects for β-Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101. |
| [4] | WU F H, HAN Z, LIU J Y, et al. 8.7 A/700 V β-Ga2O3 Schottky barrier diode demonstrated by oxygen annealing combined with self-aligned mesa termination[J]. Applied Physics Express, 2024, 17(3): 036504. |
| [5] | HU H D, WANG Y B, JIA X L, et al. Surface pretreatment by low-temperature O2 gas annealing for performance improvement in Pt/β-Ga2O3 Schottky barrier diodes[J]. IEEE Transactions on Electron Devices, 2024, 71(3): 1464-1468. |
| [6] | HONG Y H, ZHENG X F, HE Y L, et al. The optimized interface characteristics of β-Ga2O3 Schottky barrier diode with low temperature annealing[J]. Applied Physics Letters, 2021, 119(13): 132103. |
| [7] | ZHANG S L, DENG Y X, CHEN L, et al. Self-powered fast response X-ray detector based on vertical p-NiO/Ga2O3 heterojunction diode[J]. IEEE Photonics Technology Letters, 2024, 36(4): 286-289. |
| [8] | ZHOU L D, CHEN H, DENG Y X, et al. Alpha particle detection based on a NiO/β-Ga2O3 heterojunction diode[J]. Applied Physics Letters, 2023, 123(16): 161103. |
| [9] | ZHOU L D, CHEN H, XU T L, et al. Radiation effects of high-fluence reactor neutron on Ni/β-Ga2O3 Schottky barrier diodes[J]. Applied Physics Letters, 2024, 124(1): 013506. |
| [10] | CHEN H, ZHOU L D, MA T, et al. Radiation effects of 5 MeV proton on Ni/β-Ga2O3 Schottky barrier diodes[J]. APL Materials, 2024, 12(12): 121114. |
| [11] | RAVADGAR P, HORNG R H, WANG T Y. Healing of surface states and point defects of single-crystal β-Ga2O3 epilayers[J]. ECS Journal of Solid State Science and Technology, 2012, 1(4): N58-N60. |
| [12] | LIU J Y, HAN Z, REN L, et al. Oxygen vacancies and local amorphization introduced by high fluence neutron irradiation in β-Ga2O3 power diodes[J]. Applied Physics Letters, 2023, 123(11): 112106. |
| [13] | HUANG Y T, XU X D, YANG J Q, et al. Defect identification in β-Ga2O3 Schottky barrier diodes with electron radiation and annealing regulating[J]. IEEE Transactions on Nuclear Science, 2024, 71(5): 1178-1185. |
| [14] | LINGAPARTHI R, THIEU Q T, SASAKI K, et al. Effects of oxygen annealing of β-Ga2O3 epilayers on the properties of vertical Schottky barrier diodes[J]. ECS Journal of Solid State Science and Technology, 2020, 9(2): 024004. |
| [15] | YU C X, HU H D, WANG Y B, et al. Enhancing β-Ga2O3 Schottky barrier diodes’ performance through low-temperature post-annealing: achieving optimal forward current-voltage characteristics[J]. IEEE Transactions on Electron Devices, 2024, 71(9): 5552-5558. |
| [16] | INGEBRIGTSEN M E, KUZNETSOV A Y, SVENSSON B G, et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3 [J]. APL Materials, 2018, 7(2): 022510. |
| [17] | HE Y L, SHENG B S, HONG Y H, et al. Research on the β-Ga2O3 Schottky barrier diodes with oxygen-containing plasma treatment[J]. Applied Physics Letters, 2023, 122(16): 163503. |
| [18] | POLYAKOV A Y, LEE I H, SMIRNOV N B, et al. Hydrogen plasma treatment of β-Ga2O3: changes in electrical properties and deep trap spectra[J]. Applied Physics Letters, 2019, 115(3): 032101. |
| [19] | POLYAKOV A Y, LEE I H, SMIRNOV N B, et al. Defects at the surface of β-Ga2O3 produced by Ar plasma exposure[J]. APL Materials, 2019, 7(6): 061102. |
| [20] | LI M, YANG M C, WEN Z, et al. Activation of Mg impurities in epitaxial p-GaN with rapid thermal annealing assisted supercritical fluid treatment[J]. Applied Physics Express, 2023, 16(5): 055501. |
| [21] | LIU J, YANG M C, LIU C, et al. Three orders of reverse leakage reduction by using supercritical CO2 nitriding process on GaN quasi-vertical Schottky barrier diode[J]. IEEE Transactions on Electron Devices, 2021, 68(1): 197-201. |
| [22] | WANG M H, YANG M C, LIU W H, et al. A highly efficient annealing process with supercritical N2O at 120 ℃ for SiO2/4H-SiC interface[J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1841-1846. |
| [23] | WANG M H, YANG M C, LIU W H, et al. Interface optimization of 4H-SiC (0001) MOS structures with supercritical CO2 fluid[J]. Applied Physics Express, 2020, 13(11): 111002. |
| [24] | WU P Y, CHANG T C, CHEN M C, et al. Improvement of hafnium oxide resistive memory performance through low-temperature supercritical oxidation treatments[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 541-544. |
| [25] | RUAN D B, LIU P T, GAN K J, et al. Improvement on thermal stability for indium gallium zinc oxide by oxygen vacancy passivation with supercritical fluid cosolvent oxidation[J]. Applied Physics Letters, 2021, 119(23): 231602. |
| [26] | WEN Z, YANG M C, YANG S Q, et al. Mechanism of improving Al2O3/β-Ga2O3 interface after supercritical fluid process at a low temperature[J]. IEEE Transactions on Electron Devices, 2025, 72(4): 1669-1673. |
| [27] | PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. |
| [28] | HAO W B, HE Q M, ZHOU K, et al. Low defect density and small I-V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2 [J]. Applied Physics Letters, 2021, 118(4): 043501. |
| [29] | DELA CRUZ Z, HOU C, MARTINEZ-GAZONI R F, et al. Performance of in situ oxidized platinum/iridium alloy Schottky contacts on (001), (201), and (010) β-Ga2O3 [J]. Applied Physics Letters, 2022, 120(8): 083503. |
| [30] | WANG T, PENG S A, JIN Z, et al. Interface characterization of graphene-silicon heterojunction using Hg probe capacitance-voltage measurement[J]. Advanced Materials Interfaces, 2024, 11(23): 2400184. |
| [31] | COWLEY A M, SZE S M. Surface states and barrier height of metal-semiconductor systems[J]. Journal of Applied Physics, 1965, 36(10): 3212-3220. |
| [32] | WU X, YANG E S, EVANS H L. Negative capacitance at metal-semiconductor interfaces[J]. Journal of Applied Physics, 1990, 68(6): 2845-2848. |
| [33] | DU L L, XIN Q, XU M S, et al. High-performance Ga2O3 diode based on tin oxide Schottky contact[J]. IEEE Electron Device Letters, 2019, 40(3): 451-454. |
| [34] | HILL W A, COLEMAN C C. A single-frequency approximation for interface-state density determination[J]. Solid-State Electronics, 1980, 23(9): 987-993. |
| [35] | WASEEM M, IBRAHIM M S, ABBAS W, et al. Evaluation of temperature-humidity-reverse bias robustness of 3rd generation 650 V class 4H-SiC discrete power MOSFET devices[C]// 2023 IEEE International Integrated Reliability Workshop (IIRW). October 8-12, 2023, South Lake Tahoe, CA, USA. IEEE, 2023: 1-6. |
| [36] | SUN K, MÜLLER-BUSCHBAUM P. Shedding light on the moisture stability of halide perovskite thin films[J]. Energy Technology, 2023, 11(4): 2201475. |
| [37] | YAKOVLEV N N, NIKOLAEV V I, STEPANOV S I, et al. Effect of oxygen on the electrical conductivity of Pt-contacted α-Ga2O3/ε(κ)-Ga2O3 MSM structures on patterned sapphire substrates[J]. IEEE Sensors Journal, 2021, 21(13): 14636-14644. |
| [38] | ALMAEV A V, NIKOLAEV V I, STEPANOV S I, et al. Effect of ambient humidity on the electrical conductivity of polymorphic Ga2O3 structures[J]. Semiconductors, 2021, 55(3): 346-353. |
| [39] | GUO G F, MA Y Q, WEI D, et al. Enhancement of transport properties of β-Ga2O3 by hydrogen[J]. International Journal of Hydrogen Energy, 2023, 48(82): 31837-31843. |
| [40] | LIU H B, UNIVERSITY P, YU H, et al. Performance improvement of (Al x Ga1- x )2O3/Ga2O3 heterostructure FET via supercritical isostatic pressing-induced self-redox[J]. ACS Applied Materials & Interfaces, 2025, 17(13): 19892-19899. |
| [41] | ROMANG A H, WATKINS J J. Supercritical fluids for the fabrication of semiconductor devices: emerging or missed opportunities?[J]. Chemical Reviews, 2010, 110(1): 459-478. |
| [42] | ZHANG X G, JOHNSTON K P. Supercritical CO2-based solvents in next generation microelectronics processing[J]. Chinese Science Bulletin, 2007, 52(1): 27-33. |
| [43] | LIEN C D, SO F C T, NICOLET M A. An improved forward I-V method for nonideal Schottky diodes with high series resistance[J]. IEEE Transactions on Electron Devices, 1984, 31(10): 1502-1503. |
| [44] | WANGYANG P H, HUANG X L, SHI X L, et al. Advances in Schottky parameter extraction and applications[J]. Journal of Materials Science & Technology, 2025, 218: 317-335. |
| [45] | LUONGO G, DI BARTOLOMEO A, GIUBILEO F, et al. Electronic properties of graphene/p-silicon Schottky junction[J]. Journal of Physics D: Applied Physics, 2018, 51(25): 255305. |
| [46] | MIRKHOSRAVI F, RASHIDI A, ELSHAFIEY A T, et al. Effects of fast and thermal neutron irradiation on Ga-polar and N-polar GaN diodes[J]. Journal of Applied Physics, 2023, 133(1): 015704. |
| [1] | 姚函妤, 陈楷, 易雨薇, 周延琪, 李霜, 唐群涛. 热处理温度与Er掺杂量对氧化镍薄膜光学与电学特性的影响[J]. 人工晶体学报, 2025, 54(9): 1622-1632. |
| [2] | 窦瑛, 王英民, 高彦昭, 程红娟. 硒添加量对硒化镉单晶电学和光学性能的影响研究[J]. 人工晶体学报, 2025, 54(8): 1403-1409. |
| [3] | 李晓旭, 石蔡语, 沈磊, 曾光, 李晓茜, 陈宇畅, 卢红亮. β-Ga2O3纳米带场效应晶体管及日盲紫外光电探测器研究进展[J]. 人工晶体学报, 2025, 54(8): 1352-1368. |
| [4] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [5] | 张飞洋, 闫锋, 娄岳, 李波江, 李杰. Co掺杂Na0.5Bi4.5Ti4O15铋层状无铅压电陶瓷制备及电学性能研究[J]. 人工晶体学报, 2025, 54(6): 1061-1067. |
| [6] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [7] | 姜博文, 纪为国, 张璐, 范骐鸣, 潘明艳, 黄浩天, 齐红基. 导模法生长β-Ga2O3晶体流场对称性研究[J]. 人工晶体学报, 2025, 54(3): 378-385. |
| [8] | 沈睿, 郁鑫鑫, 李忠辉, 陈端阳, 赛青林, 谯兵, 周立坤, 董鑫, 齐红基, 陈堂胜. 氧化镓肖特基二极管硼离子注入终端技术研究[J]. 人工晶体学报, 2025, 54(3): 524-529. |
| [9] | 霍晓青, 张胜男, 周金杰, 王英民, 程红娟, 孙启升. 3~4英寸Fe掺高阻β-Ga2O3单晶的制备及其性能研究[J]. 人工晶体学报, 2025, 54(3): 407-413. |
| [10] | 陈旭阳, 李昊勃, 秦华垚, 许明耀, 卢寅梅, 何云斌. 新型亚氧化物化学气相传输工艺低成本生长β-Ga2O3厚膜[J]. 人工晶体学报, 2025, 54(3): 445-451. |
| [11] | 孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370. |
| [12] | 查显弧, 万玉喜, 张道华. β相氧化镓p型导电研究进展[J]. 人工晶体学报, 2025, 54(2): 177-189. |
| [13] | 王凯凯, 杜嵩, 徐豪, 龙浩. Ga2O3/NiOx肖特基势垒二极管器件的性能优化研究[J]. 人工晶体学报, 2025, 54(2): 337-347. |
| [14] | 杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波. 光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究[J]. 人工晶体学报, 2025, 54(2): 202-211. |
| [15] | 黄东阳, 黄浩天, 潘明艳, 徐子骞, 贾宁, 齐红基. 垂直布里奇曼法生长氧化镓单晶及其性能表征[J]. 人工晶体学报, 2025, 54(2): 190-196. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS