欢迎访问《人工晶体学报》官方网站,今天是 2025年8月7日 星期四 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (3): 361-370.DOI: 10.16553/j.cnki.issn1000-985x.2024.0295

• 晶体生长、掺杂和缺陷 •    下一篇

Mg掺杂氧化镓研究进展

孙汝军1,2, 张晶辉1,2, 李一帆1,2, 郝跃1,2, 张进成1,2   

  1. 1.西安电子科技大学,宽禁带半导体器件与集成技术全国重点实验室,西安 710071;
    2.西安电子科技大学集成电路学部,西安 710071
  • 收稿日期:2024-11-25 出版日期:2025-03-15 发布日期:2025-04-03
  • 通信作者: 孙汝军,博士,副教授。E-mail:sunrujun@xidian.edu.cn; 张进成,博士,教授。E-mail:jchzhang@xidian.edu.cn
  • 作者简介:孙汝军(1990—),女,湖南省人,博士,副教授。E-mail:sunrujun@xidian.edu.cn; 孙汝军,西安电子科技大学集成电路学部副教授,硕士生导师。主要研究方向为超宽禁带半导体电子态缺陷表征与调控。
  • 基金资助:
    国家自然科学基金(62204186);陕西省三秦英才引进计划青年项目;国家级抗辐照应用技术创新中心(KFZC2022020401);中央高校基本科研业务费专项资金(ZYTS23027)

Review on Mg Doping of Ga2O3

SUN Rujun1,2, ZHANG Jinghui1,2, LI Yifan1,2, HAO Yue1,2, ZHANG Jincheng1,2   

  1. 1. National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology, Xidian University, Xi'an 710071, China;
    2. Faculty of Integrated Circuit, Xidian University, Xi'an 710071, China
  • Received:2024-11-25 Online:2025-03-15 Published:2025-04-03

摘要: 氧化镓(Ga2O3)材料具有超宽禁带宽度、高击穿电场强度,在电力电子器件和光电器件领域具有巨大应用前景。虽然氧化镓难以实现p型导电,但仍可以利用p型掺杂调控能带实现电学性能设计。实验上已验证的氧化镓p型掺杂杂质有Mg、Fe、N、Zn、Cu、Ni、Co等,其中,Mg掺杂由于形成能最低、能级位置最靠近价带顶,以及掺入方法多而被大量研究。本文聚焦Mg掺杂,首先对Mg掺杂氧化镓的受主能级的理论计算认识和实验测试结果进行综述;接着总结了Mg掺杂氧化镓半绝缘单晶和外延层的各种掺杂方法、掺杂浓度,以及在热处理中Mg扩散等关键问题;最后指出关于Mg掺入、激活及扩散机制还值得进一步研究,并对其未来进行了展望。

关键词: 氧化镓, Mg掺杂, 半绝缘衬底, 电流阻挡层, 电学性能

Abstract: Gallium oxide (Ga2O3) possesses an ultra-wide bandgap and high breakdown electric field, making it promising for applications in power electronic devices and optoelectronic devices. Although Ga2O3 lacks p-type conductivity, we can still utilize p-type doping to control and design electrical properties by energy band engineering. The p-type dopants for gallium oxide that have been experimentally verified include Mg, Fe, N, Zn, Cu, Ni, Co, etc. Among the p-type dopants of Ga2O3, Mg is extensively studied due to its lowest formation energy, closest energy level to the valence band top, and multiple doping methods. This paper focuses on Mg doping β-Ga2O3. Firstly, the theoretical computational understanding and experimental test results of the acceptor levels of Mg-doped Ga2O3 are reviewed. Secondly, various doping methods, doping concentrations, and key issues such as Mg diffusion during thermal treatment for semi-insulating single crystals and epitaxial layers of Mg-doped β-Ga2O3 are summarized. Finally, it is pointed out that further investigations are needed on the mechanisms of Mg incorporation, activation and diffusion.

Key words: Ga2O3, Mg doping, semi-insulating substrate, current blocking layer, electrical property

中图分类号: