
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1787-1795.DOI: 10.16553/j.cnki.issn1000-985x.2025.0143
收稿日期:2025-07-08
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
刘彬文,博士,研究员。E-mail:bwliu@fjirsm.ac.cn;郭国聪,博士,研究员。E-mail:gcguo@fjirsm.ac.cn
作者简介:李俊哲(1999—),男,河南省人,博士研究生。E-mail:lijunzhe@fjirsm.ac.cn基金资助:
LI Junzhe1,2(
), LIU Binwen1(
), GUO Guocong1(
)
Received:2025-07-08
Online:2025-10-20
Published:2025-11-11
摘要: 非线性光学(NLO)晶体因在激光系统中的频率转换能力而受到广泛关注。本文采用高温固相法,在镓基硫族化物体系中引入碱土金属阳离子(Mg2+)和具有孤对电子的金属阳离子(Pb2+)的多面体结构单元,成功合成了新型NLO晶体PbMg6Ga6S16。在结构方面,该晶体结晶于非中心对称的P-6空间群,而其晶体结构的特征是Pb2+填充于三维[Mg-Ga-S]∞框架结构中。光学性能方面,在1 910 nm激光作用下,展现出可相位匹配的二次谐波(SHG)响应(为AgGaS2的0.1),并具有2.85 eV的实验光学带隙。基于第一性原理的理论计算表明,PbMg6Ga6S16 为间接带隙半导体,电子从布里渊区的G点跃迁至H和K之间,理论光学带隙为2.55 eV。该工作表明倍频响应主要源自[GaS4]四面体与[PbS6]多面体结构单元的协同作用。
中图分类号:
李俊哲, 刘彬文, 郭国聪. PbMg6Ga6S16晶体的合成与非线性光学性能的研究[J]. 人工晶体学报, 2025, 54(10): 1787-1795.
LI Junzhe, LIU Binwen, GUO Guocong. Crystal PbMg6Ga6S16: Synthesis and Study of Nonlinear Optical Properties[J]. Journal of Synthetic Crystals, 2025, 54(10): 1787-1795.
图1 PbMg6Ga6S16晶体的元素与结构确认图。(a)EDS图谱;(b)实验和理论XRD图谱
Fig.1 Confirmation diagram of elements and structure of PbMg6Ga6S16. (a) Plot of EDS; (b) experimental and calculated XRD plot
| Compound | PbMg6Ga6S16 | BaMg6Ga6S16 |
|---|---|---|
| Temperature/K | 293 | 297 |
| Crystal system | Hexagonal | Hexagonal |
| Space group | P-6 | P-6 |
| a/Å | 16.790 0(4) | 16.930 1(11) |
| b/Å | 16.790 0(4) | 16.930 1(11) |
| c/Å | 3.710 0(10) | 7.422 5(9) |
| α/(°) | 90 | 90 |
| β/(°) | 90 | 90 |
| γ/(°) | 120 | 120 |
| Volume/Å3 | 905.7(4) | 1 842.5(3) |
| Z | 1 | 3 |
| μ/mm-1 | 15.071 | 9.566 |
| F(000) | 894.0 | 1 710 |
| Radiation | Mo-Kα (λ=0.710 73) | Mo-Kα (λ=0.710 73) |
| 2θ range/(°) | 7.414 to 50.996 | 2.41 to 25.32 |
| Reflections collected | 6 948 | 14 772 |
| GOOD on F2 | 1.034 | 1.053 |
| R1, wR2 (I>2σ(I)) | 0.018 0, 0.038 4 | 0.033 5, 0.081 8 |
| R1, wR2 (all data) | 0.021 1, 0.038 8 | 0.049 2, 0.091 8 |
表1 PbMg6Ga6S16和BaMg6Ga6S16晶体参数对比
Table 1 Comparison of crystal parameters of PbMg6Ga6S16 and BaMg6Ga6S16
| Compound | PbMg6Ga6S16 | BaMg6Ga6S16 |
|---|---|---|
| Temperature/K | 293 | 297 |
| Crystal system | Hexagonal | Hexagonal |
| Space group | P-6 | P-6 |
| a/Å | 16.790 0(4) | 16.930 1(11) |
| b/Å | 16.790 0(4) | 16.930 1(11) |
| c/Å | 3.710 0(10) | 7.422 5(9) |
| α/(°) | 90 | 90 |
| β/(°) | 90 | 90 |
| γ/(°) | 120 | 120 |
| Volume/Å3 | 905.7(4) | 1 842.5(3) |
| Z | 1 | 3 |
| μ/mm-1 | 15.071 | 9.566 |
| F(000) | 894.0 | 1 710 |
| Radiation | Mo-Kα (λ=0.710 73) | Mo-Kα (λ=0.710 73) |
| 2θ range/(°) | 7.414 to 50.996 | 2.41 to 25.32 |
| Reflections collected | 6 948 | 14 772 |
| GOOD on F2 | 1.034 | 1.053 |
| R1, wR2 (I>2σ(I)) | 0.018 0, 0.038 4 | 0.033 5, 0.081 8 |
| R1, wR2 (all data) | 0.021 1, 0.038 8 | 0.049 2, 0.091 8 |
| Atom | x/a | y/b | z/c | U(eq)/(103 Å2) |
|---|---|---|---|---|
| Mg2 | 4 237(2) | 2 938(2) | 0 | 13.3(7) |
| Mg3 | 449(2) | 2 481(2) | 0 | 12.5(7) |
| Mg1 | 881(2) | 4 711(2) | 0 | 14.3(8) |
| Pb1 | 0 | 0 | 0 | 20.3(4) |
| Pb2 | 3 333 | 6 667 | 0 | 23.4(4) |
| Pb3 | 6 667 | 3 333 | 0 | 20.6(4) |
| Ga3 | 2 181.2(7) | 1 864.0(8) | 5 000 | 9.2(3) |
| Ga2 | 4 706.6(7) | 1 133.2(7) | 5 000 | 8.6(2) |
| Ga1 | 2 963.7(7) | 4 395.9(8) | 5 000 | 9.7(3) |
| S1 | 3 426.9(16) | 3 328.3(17) | 5 000 | 7.8(5) |
| S8 | 108.9(17) | 3 377.2(17) | 5 000 | 8.2(5) |
| S7 | 5 307.6(16) | 785.0(17) | 0 | 9.6(5) |
| S6 | 5 021.2(16) | 2 584.4(17) | 5 000 | 9.6(5) |
| S5 | 765.1(16) | 1 650.7(16) | 5 000 | 9.3(5) |
| S4 | 1 687.5(17) | 5 850.7(17) | 5 000 | 9.8(5) |
| S3 | 2 046.0(17) | 4 096.2(17) | 0 | 9.9(5) |
| S2 | 2 565.5(18) | 1 300.3(16) | 0 | 10.7(6) |
表2 PbMg6Ga6S16原子坐标(×104)和等效各向同性位移参数
Table 2 Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters of PbMg6Ga6S16
| Atom | x/a | y/b | z/c | U(eq)/(103 Å2) |
|---|---|---|---|---|
| Mg2 | 4 237(2) | 2 938(2) | 0 | 13.3(7) |
| Mg3 | 449(2) | 2 481(2) | 0 | 12.5(7) |
| Mg1 | 881(2) | 4 711(2) | 0 | 14.3(8) |
| Pb1 | 0 | 0 | 0 | 20.3(4) |
| Pb2 | 3 333 | 6 667 | 0 | 23.4(4) |
| Pb3 | 6 667 | 3 333 | 0 | 20.6(4) |
| Ga3 | 2 181.2(7) | 1 864.0(8) | 5 000 | 9.2(3) |
| Ga2 | 4 706.6(7) | 1 133.2(7) | 5 000 | 8.6(2) |
| Ga1 | 2 963.7(7) | 4 395.9(8) | 5 000 | 9.7(3) |
| S1 | 3 426.9(16) | 3 328.3(17) | 5 000 | 7.8(5) |
| S8 | 108.9(17) | 3 377.2(17) | 5 000 | 8.2(5) |
| S7 | 5 307.6(16) | 785.0(17) | 0 | 9.6(5) |
| S6 | 5 021.2(16) | 2 584.4(17) | 5 000 | 9.6(5) |
| S5 | 765.1(16) | 1 650.7(16) | 5 000 | 9.3(5) |
| S4 | 1 687.5(17) | 5 850.7(17) | 5 000 | 9.8(5) |
| S3 | 2 046.0(17) | 4 096.2(17) | 0 | 9.9(5) |
| S2 | 2 565.5(18) | 1 300.3(16) | 0 | 10.7(6) |
图2 PbMg6Ga6S16晶体结构示意图。(a)[MgS6]结构单元;(b)[GaS4]结构单元;(c)[Mg-Ga-S]框架;(d)一维[Ga2S4]链;(e)PbMg6Ga6S16沿ab平面结构图;(f)一维[PbS3]链
Fig.2 Crystal structure of PbMg6Ga6S16. (a) [MgS6] structural unit; (b) [GaS4] structural unit; (c)[Mg-Ga-S] framework; (d) 1D chain of [Ga2S4]; (e) crystal structure of ab plane of PbMg6Ga6S16; (f) 1D chain of [PbS3]
图3 PbMg6Ga6S16的实验测试与理论计算结果图。(a)SHG响应图谱;(b)NLO系数图谱;(c)实验带隙测试图谱;(d)计算能带结构图谱;(e)局域态密度图谱;(f)红外透过范围测试图谱
Fig.3 Experimental testing and theoretical calculation results of PbMg6Ga6S16. (a) Plot of SHG; (b) NLO coefficients; (c) experimental band gap; (d) calculated band gap; (e) PDOS; (f) infrared transmittance range
| Property | PbMg6Ga6S16 | PbMg6Ga6S161×1×2 super cell | CaMg6Ga6S16 | SrMg6Ga6S16 | BaMg6Ga6S16 | |
|---|---|---|---|---|---|---|
| Covalent unit | ×[MgS6] | 18 | 27 | 27 | 27 | 27 |
| ×[GaS4] | 9 | 18 | 18 | 18 | 18 | |
| SHG(×AGS) | 0.1 | — | 0.7 | 0.7 | 0.8 | |
| d111/(pm·V-1) | — | -17.13 | 9.93 | 10.13 | 10.19 | |
| d222/(pm·V-1) | — | -3.75 | 3.82 | 3.83 | 3.87 | |
| LIDT(×AGS) | 2.04 | — | 11 | 11 | 11 | |
表3 不同镓基硫属化合物的性能对比
Table 3 Comparative of properties of different Ga-based chalcogenide compounds
| Property | PbMg6Ga6S16 | PbMg6Ga6S161×1×2 super cell | CaMg6Ga6S16 | SrMg6Ga6S16 | BaMg6Ga6S16 | |
|---|---|---|---|---|---|---|
| Covalent unit | ×[MgS6] | 18 | 27 | 27 | 27 | 27 |
| ×[GaS4] | 9 | 18 | 18 | 18 | 18 | |
| SHG(×AGS) | 0.1 | — | 0.7 | 0.7 | 0.8 | |
| d111/(pm·V-1) | — | -17.13 | 9.93 | 10.13 | 10.19 | |
| d222/(pm·V-1) | — | -3.75 | 3.82 | 3.83 | 3.87 | |
| LIDT(×AGS) | 2.04 | — | 11 | 11 | 11 | |
| [1] |
柴贤丹, 陈文发, 闫秋楠, 等. Rb2MGe3S8(M=Zn, Cd): [MGe3S8]2-单元构型变换导致化合物从中心到非心的转变[J]. 化学学报, 2022, 80(5): 633-644.
DOI |
|
CHAI X D, CHEN W F, YAN Q N, et al. Rb2MGe3S8(M=Zn, Cd): non-centrosymmetry transformation led by structure change of [MGe3S8]2- unit[J]. Acta Chimica Sinica, 2022, 80(5): 633-644 (in Chinese).
DOI URL |
|
| [2] | 薛艳艳, 徐晓东, 苏良碧, 等. 中红外波段激光晶体的研究进展[J]. 人工晶体学报, 2020, 49(8): 1347-1360. |
| XUE Y Y, XU X D, SU L B, et al. Research progress of mid-infrared laser crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1347-1360 (in Chinese). | |
| [3] | 周嘉政, 楚 羽, 李俊杰, 等. Ba7AgGa5S15: 一种新型混合金属硫化物的非线性光学性能研究[J]. 人工晶体学报, 2020, 49(8): 1509-1516. |
| ZHOU J Z, CHU Y, LI J J, et al. Ba7AgGa5S15: study on the nonlinear optical properties of a new metal-mixed sulfide[J]. Journal of Synthetic Crystals, 2020, 49(8): 1509-1516 (in Chinese). | |
| [4] |
YANG H D, RAN M Y, WEI W B, et al. Recent advances in IR nonlinear optical chalcogenides with well-balanced comprehensive performance[J]. Materials Today Physics, 2023, 35: 101127.
DOI URL |
| [5] |
LUO L, WANG L N, CHEN J B, et al. AIB3 IIC3 IIIQ8 VI: a new family for the design of infrared nonlinear optical materials by coupling octahedra and tetrahedra units[J]. Journal of the American Chemical Society, 2022, 144(48): 21916-21925.
DOI URL |
| [6] |
GUO S P, CHI Y, XUE H G. SnI4⋅(S8)2: a novel adduct-type infrared second-order nonlinear optical crystal[J]. Angewandte Chemie, 2018, 130(36): 11714-11717.
DOI URL |
| [7] |
OKOROGU A O, MIROV S B, LEE W, et al. Tunable middle infrared downconversion in GaSe and AgGaS2 [J]. Optics Communications, 1998, 155(4/5/6): 307-312.
DOI URL |
| [8] |
BOYD G, STORZ F, MCFEE J, et al. Linear and nonlinear optical properties of some ternary selenides[J]. IEEE Journal of Quantum Electronics, 1972, 8: 900.
DOI URL |
| [9] |
BOYD G D, BUEHLER E, STORZ F G. Linear and nonlinear optical properties of ZnGeP2 and CdSe[J]. Applied Physics Letters, 1971, 18(7): 301-304.
DOI URL |
| [10] |
LI X S, KANG L, LI C, et al. PbGa4S7: a wide-gap nonlinear optical material[J]. Journal of Materials Chemistry C, 2015, 3(13): 3060-3067.
DOI URL |
| [11] |
ZHENG Z X, QIU Z X, XIE C H, et al. Remarkable phase-matchable second-harmonic generation realized by strong polarities of [PbSe3] and [GaSe4] functional motifs in PbGa4Se7 [J]. Science China Materials, 2023, 66(7): 2795-2802.
DOI |
| [12] |
ZHANG M J, LI B X, LIU B W, et al. Ln3GaS6 (Ln=Dy, Y): new infrared nonlinear optical materials with high laser induced damage thresholds[J]. Dalton Transactions, 2013, 42(39): 14223-14229.
DOI URL |
| [13] |
GUO Y F, ZHOU Y Q, LIN X S, et al. Growth and characterizations of BaGa4S7 crystal[J]. Optical Materials, 2014, 36(12): 2007-2011.
DOI URL |
| [14] |
CHEN W F, JIANG X M, PEI S M, et al. Ternary AGa5S8 (A=K, Rb, Cs): promising infrared nonlinear optical materials rationally realized by “one-for-multiple substitution” strategy[J]. Science China Materials, 2023, 66(2): 740-747.
DOI |
| [15] |
LIU B W, JIANG X M, ZENG H Y, et al. [ABa2Cl] [Ga4S8] (A=Rb, Cs): wide-spectrum nonlinear optical materials obtained by polycation-substitution-induced nonlinear optical (NLO)-functional motif ordering[J]. Journal of the American Chemical Society, 2020, 142(24): 10641-10645.
DOI URL |
| [16] |
LOU X Y, JIANG X M, LIU B W, et al. Excellent nonlinear optical M [M4Cl] [Ga11S20] (M=A/Ba, A=K, Rb) achieved by unusual cationic substitution strategy[J]. Small, 2024, 20(3): 2305711.
DOI URL |
| [17] | SHELDRICK G M. Crystal structure refinement with SHELXL[J]. Acta Crystallographica Section C, Structural Chemistry, 2015, 71(1): 3-8. |
| [18] |
SPEK A L. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography, 2003, 36(1): 7-13.
DOI URL |
| [19] | Kortüm G. Reflectance spectroscopy: principles, methods, applications[M]. Springer Science & Business Media. 2012. |
| [20] |
ZHANG M J, JIANG X M, ZHOU L J, et al. Two phases of Ga2S3: promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds[J]. Journal of Materials Chemistry C, 2013, 1(31): 4754.
DOI URL |
| [21] |
GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties: the ABINIT software project[J]. Computational Materials Science, 2002, 25(3): 478-492.
DOI URL |
| [22] |
GONZE X, JOLLET F, ABREU ARAUJO F, et al. Recent developments in the ABINIT software package[J]. Computer Physics Communications, 2016, 205: 106-131.
DOI URL |
| [23] |
ZUNGER A, WEI S H, FERREIRA L G, et al. Special quasirandom structures[J]. Physical Review Letters, 1990, 65(3): 353-356.
PMID |
| [24] |
CHEN J L, ZHANG Y J, WU H P, et al. AeMg6Ga6S16 (Ae=Ca, Sr, Ba): the first double alkaline-earth metal chalcogenides with excellent performances[J]. Advanced Optical Materials, 2023, 11(2): 2202147.
DOI URL |
| [25] | KURTZ S, PERRY T. A powder technique for the evaluation of nonlinear optical materials[J]. IEEE Journal of Quantum Electronics, 1968, 4(5): 333. |
| [26] |
KLEINMAN D A. Nonlinear dielectric polarization in optical media[J]. Physical Review, 1962, 126(6): 1977-1979.
DOI URL |
| [27] |
LIU B W, ZENG H Y, JIANG X M, et al. Phase matching achieved by bandgap widening in infrared nonlinear optical materials [ABa3Cl2] [Ga5S10] (A= K, Rb, and Cs)[J]. CCS Chemistry, 2021, 3(3): 964-973.
DOI URL |
| [1] | 冷昊宁, 孙霄霄, 穆柏旭, 宁丽娜. KNbO3高压下相变行为的第一性原理研究[J]. 人工晶体学报, 2025, 54(9): 1584-1592. |
| [2] | 秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453. |
| [3] | 刘首廷, 温旭杰, 韩文斌, 李陈哲, 宋伟, 崔建钢, 宋松, 李勇, 孙德辉, 刘宏. 2~3英寸掺镁近化学计量比钽酸锂晶体生长[J]. 人工晶体学报, 2025, 54(8): 1396-1402. |
| [4] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [5] | 马忠亮, 段帅毅, 赵玲玲, 鹿桂花, 李玉强, 刘玉学, 杨健. Mn4+掺杂四方相CaLaGaO4远红光发射荧光粉的制备及其发光性能[J]. 人工晶体学报, 2025, 54(8): 1470-1477. |
| [6] | 莫秋燕, 吴家隐, 荆涛. Pt修饰AlN单层对C2H6和C6H6吸附和气敏特性的第一性原理研究[J]. 人工晶体学报, 2025, 54(6): 1050-1060. |
| [7] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [8] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [9] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [10] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [11] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [12] | 王元娥, 王晶, 葛彩霞, 傅国娟, 宋明君. Tb3+, Sm3+掺杂的可变色KSrGd(WO4)3荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2025, 54(4): 674-683. |
| [13] | 李鹏程, 周军, 王伟刚, 吴坤尧, 李兆. Li2Mg3TiO6:Eu3+红色荧光粉的合成及其在白光LED上的应用[J]. 人工晶体学报, 2025, 54(4): 643-651. |
| [14] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [15] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS