[1] JAYAWEERA P V V, MATSIK S G, PERERA A G U, et al. Uncooled infrared detectors for 3-5 μm and beyond[J]. Applied Physics Letters, 2008, 93(2): 021105. [2] AHN M, HAN Y H, MOON S. A novel infrared absorbing structure for uncooled infrared detector[J]. Current Applied Physics, 2007, 7(6): 617-621. [3] YIN Y M, ZHOU W, JIANG L, et al. Enhanced performance of Mn-Co-Ni-O thermosensitive material by Cu and Sc co-dopants for uncooled infrared detector[J]. Journal of Alloys and Compounds, 2021, 881: 159857. [4] CHENG O Y, ZHOU W, WU J, et al. Fabrication and characterization of back-incident optically immersed bolometer based on Mn-Co-Ni-O thin films for infrared detection[J]. Sensors and Actuators A: Physical, 2015, 233: 442-450. [5] WU C Y, ZHOU W, YIN Y M, et al. Long wavelength infrared detection based on Mn-Co-Ni-O thin films with dielectric-metal-dielectric absorptive structures[J]. Infrared Physics & Technology, 2019, 102: 102987. [6] CHEN W P, WANG X X, WANG J, et al. Hydrogen-induced degradation in Mn-Co-Ni-O negative-temperature-coefficient thermistors[J]. Japanese Journal of Applied Physics, 2003, 42(Part 1, No. 10): 6621-6622. [7] HE L, LING Z Y. Electrical conduction of intrinsic grain and grain boundary in Mn-Co-Ni-O thin film thermistors: grain size influence[J]. Journal of Applied Physics, 2011, 110(9): 093708. [8] ZHANG F, HUANG Z M. Spectroscopic ellipsometric properties of annealed Mn1.95Co0.77Ni0.28O4 thin films[J]. Optics Letters, 2017, 42(19): 3836-3839. [9] KONG W W, WEI W, GAO B, et al. A study on the electrical properties of Mn-Co-Ni-O thin films grown by radio frequency magnetron sputtering with different thicknesses[J]. Applied Surface Science, 2017, 423: 1012-1018. [10] HE L, LING Z Y, LING D X, et al. Role of film thickness on the microstructure and electrical properties of Mn-Co-Ni-O thin film thermistors[J]. Materials Science and Engineering: B, 2015, 198: 20-24. [11] HE L, LING Z Y, HUANG Y T, et al. Effects of annealing temperature on microstructure and electrical properties of Mn-Co-Ni-O thin films[J]. Materials Letters, 2011, 65(11): 1632-1635. [12] 谢 伟,梁 枫,邹长伟,等.射频磁控溅射制备铝酸锶长余辉发光薄膜[J].材料研究与应用,2013,7(3):188-192. XIE W, LIANG F, ZOU C W, et al. Long-persistent luminescence of strontium aluminate thin films fabricated by radio frequency magnetron sputtering[J]. Materials Research and Application, 2013, 7(3): 188-192(in Chinese). [13] HE L, LING Z Y. Studies of temperature dependent ac impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor[J]. Applied Physics Letters, 2011, 98(24): 242112. [14] 林松盛,高 迪,苏一凡,等.偏压对高功率脉冲磁控溅射DLC膜层结构及性能的影响[J].材料研究与应用,2020,14(1):1-8. LIN S S, GAO D, SU Y F, et al. Effect of biasvoltage on structure and properties of DLC films deposited by high power pulse magnetron sputtering[J]. Materials Research and Application, 2020, 14(1): 1-8(in Chinese). [15] 唐 鹏,王启民,林松盛,等.基体偏压对高功率脉冲磁控溅射AlCrN涂层结构及其性能的影响[J].材料研究与应用,2019,13(4):257-262. TANG P, WANG Q M, LIN S S, et al. Influence of substrate bias on the structure and properties of AlCrN coatings deposited by high power impulse magnetron sputtering[J]. Materials Research and Application, 2019, 13(4): 257-262(in Chinese). [16] ZHANG X B, REN W, KONG W W, et al. Effect of sputtering power on structural, cationic distribution and optical properties of Mn2Zn0.25Ni0.75O4 thin films[J]. Applied Surface Science, 2018, 435: 815-821. [17] BABU K R, SINGH R. Effect of RF power on structural, magnetic, and optical properties of CoFe2O4 thin films[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(12): 4029-4037. [18] AL-BARADI A M, EL-NAHASS M M, HASSANIEN A M, et al. Influence of RF sputtering power on structural and optical properties of Nb2O5 thin films[J]. Optik, 2018, 168: 853-863. [19] CHENG O Y, ZHOU W, WU J, et al. Uncooled bolometer based on Mn1.56Co0.96Ni0.48O4 thin films for infrared detection and thermal imaging[J]. Applied Physics Letters, 2014, 105(2): 022105. [20] 姬凯迪,高灿灿,杨发顺,等.后退火气氛对磁控溅射制备β-Ga2O3薄膜材料的影响[J].人工晶体学报,2021,50(6):1056-1061. JI K D, GAO C C, YANG F S, et al. Effect of post annealing atmosphere on β-Ga2O3 thin films prepared by magnetron sputtering[J]. Journal of Synthetic Crystals, 2021, 50(6): 1056-1061(in Chinese). [21] LI R F, FU Q Y, ZOU X H, et al. Mn-Co-Ni-O thin films prepared by sputtering with alloy target[J]. Journal of Advanced Ceramics, 2020, 9(1): 64-71. [22] SAKTHIVEL P, MURUGAN R, ASAITHAMBI S, et al. Radio frequency power induced changes of structural, morphological, optical and electrical properties of sputtered cadmium oxide thin films[J]. Thin Solid Films, 2018, 654: 85-92. [23] ASGARY S, VAGHRI E, DAEMI M, et al. Magnetron sputtering technique for analyzing the influence of RF sputtering power on microstructural surface morphology of aluminum thin films deposited on SiO2/Si substrates[J]. Applied Physics A, 2021, 127(10): 1-7. [24] ZHANG R G, WANG B Y, WEI L. Influence of RF power on the structure of ZnS thin films grown by sulfurizing RF sputter deposited ZnO[J]. Materials Chemistry and Physics, 2008, 112(2): 557-561. [25] SHI Q, REN W, KONG W W, et al. Oxidation mode on charge transfer mechanism in formation of Mn-Co-Ni-O spinel films by RF sputtering[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(18): 13659-13664. [26] ZHOU W, WU C Y, YIN Y M, et al. Thickness dependence of structural, morphological and optical properties of MnCoNiO thin films grown by chemical solution deposition on SiO2/Si(1 0 0) substrate[J]. Applied Surface Science, 2019, 476: 369-373. [27] YIN Y M, WU J, ZHOU W, et al. Post annealing effects on low temperature deposited Mn-Co-Ni-O films by radio frequency magnetron sputtering[J]. Materials Letters, 2019, 235: 172-175. [28] PONMUDI S, SIVAKUMAR R, SANJEEVIRAJA C, et al. Influences of sputtering power and annealing temperature on the structural and optical properties of Al2O3∶CuO thin films fabricated by radio frequency magnetron sputtering technique[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(20): 18315-18327. [29] CHEN L, KONG W W, YAO J C, et al. Synthesis and characterization of Mn-Co-Ni-O ceramic nanoparticles by reverse microemulsion method[J]. Ceramics International, 2015, 41(2): 2847-2851. [30] ZHANG F, HUANG Z M. Study on the optical properties of Mn-Co-Ni-O thin films deposited by magnetron sputtering[J]. Optical Materials Express, 2018, 8(9): 2815. [31] CARDENAS FLECHAS L J, XURIGUERA MARTÍN E, PADILLA SANCHEZ J A, et al. Experimental comparison of the effect of temperature on the vibrational and morphological properties of NixCo3-xO4 nanostructures[J]. Materials Letters, 2021, 303: 130477. [32] LARBI T, SAID L B, DALY A B, et al. Ethanol sensing properties and photocatalytic degradation of methylene blue by Mn3O4, NiMn2O4 and alloys of Ni-manganates thin films[J]. Journal of Alloys and Compounds, 2016, 686: 168-175. [33] MA C, REN W, WANG L, et al. Effects of cation distribution on optical properties of Mn-Co-Ni-O films[J]. Materials Letters, 2015, 153: 162-164. [34] ZHANG F, HUANG Z M. Interface electrical properties between MCNO thin film and organic compounds[J]. Applied Physics Letters, 2018, 113(6): 061601. [35] WANG J W, ZHANG W K, ZHANG X B, et al. Enhanced photocatalytic ability and easy retrievable photocatalysts of Bi2WO6 quantum dots decorated magnetic carbon nano-Onions[J]. Journal of Alloys and Compounds, 2020, 826: 154217. [36] SARAVANAKUMAR K, SAKTHIVEL P, SANKARANARAYANAN R K. Influence of Sn4+ ion on band gap tailoring, optical, structural and dielectric behaviors of ZnO nanoparticles[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 267: 120487. [37] SAKTHIVEL P, RASU K K, SIVAKAMI A, et al. Band gap tailoring, structural and optical features of MgS nanoparticles: influence of Ag+ ions[J]. Optik, 2021, 236: 166544. [38] SINGH J, VERMA V, KUMAR R, et al. Influence of Mg2+-substitution on the optical band gap energy of Cr2-xMgxO3 nanoparticles[J]. Results in Physics, 2019, 13: 102106. [39] SHI Q, WANG Q R, ZHANG D, et al. Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation[J]. Journal of Luminescence, 2019, 206: 53-58. [40] SHKIR M, KHAN Z R, KHAN A, et al. A comprehensive study on structure, opto-nonlinear and photoluminescence properties of Co3O4 nanostructured thin films: an effect of Gd doping concentrations[J]. Ceramics International, 2022, 48(10): 14550-14559. [41] OUAREZ L, CHELOUCHE A, TOUAM T, et al. Au-doped ZnO sol-gel thin films: an experimental investigation on physical and photoluminescence properties[J]. Journal of Luminescence, 2018, 203: 222-229. [42] ANSHUL A, KUMAR M, RAJ A. Raman and photoluminescence spectral studies in double perovskite epitaxial Nd2CoMnO6 thin films deposited by pulse laser deposition[J]. Optik, 2020, 212: 164749. [43] GOBBINER C R, DILLIP G R, JOO S W, et al. Heterogeneity of photoluminescence properties and electronic transitions in copper oxide thin films: a thickness dependent structural and optical study[J]. Ceramics International, 2018, 44(14): 16984-16991. |