[1] KE D X, VU A A, BANDYOPADHYAY A, et al. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants[J]. Acta Biomaterialia, 2019, 84: 414-423. [2] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 2012, 6(7): 423-431. [3] JI Q, ZONG S G, YANG J B. Application and development trend of laser technology in military field[C]//Proc SPIE 11606, ICOSM 2020: Optoelectronic Science and Materials, 2020, 11606: 32-40. [4] RAVI-KUMAR S, LIES B, ZHANG X, et al. Laser ablation of polymers: a review[J]. Polymer International, 2019, 68(8): 1391-1401. [5] LE H T T, TRUONG VAN C, NGUYEN THI M, et al. Our experience using 1064 nm Nd∶YAG in palmoplantar warts[J]. Journal of Cosmetic and Laser Therapy: Official Publication of the European Society for Laser Dermatology, 2022, 24(1/2/3/4/5): 28-32. [6] 张继魁, 时家明, 苗 雷, 等. 近中红外与1.06 μm和1.54 μm激光兼容隐身光子晶体研究[J]. 发光学报, 2016, 37(9): 1130-1134. ZHANG J K, SHI J M, MIAO L, et al. Research on compatible stealth photonic crystal against near/middle infrared and 1.06 μm and 1.54 μm lasers[J]. Chinese Journal of Luminescence, 2016, 37(9): 1130-1134 (in Chinese). [7] CHEN Y F, PAN Y Y, LIU Y C, et al. Efficient high-power continuous-wave lasers at green-lime-yellow wavelengths by using a Nd∶YVO4 self-Raman crystal[J]. Optics Express, 2019, 27(3): 2029-2035. [8] WU D C, JONES I T, BOEN M, et al. A randomized, split-face, double-blind comparison trial between fractionated frequency-doubled 1 064/532 nm picosecond Nd∶YAG laser and fractionated 1 927 nm thulium fiber laser for facial photorejuvenation[J]. Lasers in Surgery and Medicine, 2021, 53(2): 204-211. [9] 崔建丰, 李福玖, 邬小娇, 等. 高能量高转换效率355 nm紫外激光器[J]. 发光学报, 2018, 39(12): 1730-1734. CUI J F, LI F J, WU X J, et al. High energy and high conversion efficiency 355 nm UV laser[J]. Chinese Journal of Luminescence, 2018, 39(12): 1730-1734 (in Chinese). [10] JU M, XIAO Y, SUN W G, et al. In-depth determination of the microstructure and energy transition mechanism for Nd3+-doped yttrium oxide laser crystals[J]. The Journal of Physical Chemistry C, 2020, 124(3): 2113-2119. [11] YI G Q, LI W W, SONG J H, et al. Structural, spectroscopic and thermal properties of hot-pressed Nd∶(Ca0.94Gd0.06)F2.06 transparent ceramics[J]. Journal of the European Ceramic Society, 2018, 38(9): 3240-3245. [12] LI D, LIU Q, ZHANG P X, et al. Crystal growth, optical properties and laser performance of new mixed Nd3+ doped Gd0.1Y0.9AlO3 crystal[J]. Journal of Alloys and Compounds, 2019, 789: 664-669. [13] JING W, LOIKO P, BASYROVA L, et al. Spectroscopy and laser operation of highly-doped 10at.% Yb∶(Lu, Sc)2O3 ceramics[J]. Optical Materials, 2021, 117: 111128. [14] ZHANG N, WANG Z X, LIU S D, et al. Watt-level femtosecond Tm-doped “mixed” sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm[J]. Optics Express, 2022, 30(13): 23978-23985. [15] 石自彬, 方 新, 于永贵, 等. 无序Nd∶CNGG晶体的生长及激光性能研究[J]. 人工晶体学报, 2008, 37(2): 360-362+359. SHI Z B, FANG X, YU Y G, et al. Growth and laser property of a disordered Nd∶CNGG crystal[J]. Journal of Synthetic Crystals, 2008, 37(2): 360-362+359 (in Chinese). [16] ZHOU H Q, ZHU S Q, LI Z, et al. Investigation on 1.0 and 1.3 μm laser performance of Nd3+∶GYAP crystal[J]. Optics & Laser Technology, 2019, 119: 105601. [17] WANG Y H, CHEN Q D, ZHANG P X, et al. Fabrication of Sb2O3 by an improved chemical reaction assisted vertical micro sublimation method and its saturable absorber performance[J]. Optical Materials Express, 2022, 12(4): 1337-1346. [18] HONG H, CHEN Q D, WANG Y H, et al. An effective 2D saturable absorber In2O3 to realize passively Q-switched laser output[J]. Optics & Laser Technology, 2022, 155: 108375. [19] 于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668+583. YU H H, PAN Z B, ZHANG H J, et al. Development of disordered laser crystals and their ultrafast lasers[J]. Journal of Synthetic Crystals, 2021, 50(4): 648-668+583 (in Chinese). [20] ARKHIPOV M V, ARKHIPOV R M, SHIMKO A A, et al. Mode locking in a Ti: sapphire laser by means of a coherent absorber[J]. JETP Letters, 2019, 109(10): 634-637. [21] STEHLÍK M, ŠULC J, BOHÁČEK P, et al. Wavelength tunability of laser based on Yb-doped GGAG crystal[J]. Laser Physics, 2018, 28(10): 105802. [22] YAN R P, LIU Y, LI X D, et al. Harmonic mode locking underneath the Q-switched envelope in passively Q-switched mode-locked Nd∶GdTaO4 1066 nm laser[J]. Infrared Physics & Technology, 2020, 111: 103553. [23] LING W J, XIA T, DONG Z, et al. Passively mode-locked Tm, Ho∶LLF laser at 1895 nm[J]. Journal of Optics, 2019, 48(2): 209-213. [24] 王希军. 56 MHz重复频率端泵SESAM连续波锁模Nd∶YVO4激光器[J]. 发光学报, 2012, 33(12): 1342-1346. WANG X J. 56 MHz end pumping Nd∶YVO4 SESAM CW mode-locked lasers[J]. Chinese Journal of Luminescence, 2012, 33(12): 1342-1346 (in Chinese). [25] MAO T W, DUAN Y M, CHEN S M, et al. Yellow and orange light selectable output generated by Nd∶YAP/YVO4/LBO Raman laser[J]. IEEE Photonics Technology Letters, 2019, 31(13): 1112-1115. [26] FERREIRA M S, WETTER N U. Diode-side-pumped, intracavity Nd∶YLF/KGW/LBO Raman laser at 573 nm for retinal photocoagulation[J]. Optics Letters, 2021, 46(3): 508-511. [27] 薛建华, 任清华, 王爱坤. LBO晶体Ⅱ类相位匹配走离角及互作用长度的计算[J]. 人工晶体学报, 2009, 38(6): 1463-1466+1471. XUE J H, REN Q H, WANG A K. Calculation of type Ⅱ phase-matching walk-off angle and interaction length of LBO crystals[J]. Journal of Synthetic Crystals, 2009, 38(6): 1463-1466+1471 (in Chinese). [28] SHILOVA G V, SIROTKIN A A, ZVEREV P G. Diode pumped Nd3∶YVO4 laser with intracavity SHG in LBO and SRS in Ba(NO3)2[C]//2018 International Conference Laser Optics (ICLO). June 4-8, 2018, St. Petersburg, Russia. IEEE, 2018: 37. [29] GAO Y H, LI Y J, FENG J X, et al. Low noise continuous-wave single-frequency dual-wavelength laser operating at 532 nm and 1.06 μm[J]. Chinese Journal of Lasers, 2019, 46(4): 0401005. [30] ZOU J Y, ZHOU L B, ZHENG W X, et al. An in-band diode-end-pumped high-power and high-efficiency ultrashort pulse Nd∶YVO4 bulk laser mode-locked by a frequency doubling LBO crystal[J]. Infrared Physics & Technology, 2021, 116: 103759. [31] 刘 娟, 谢 茹. 旋光现象借助MATLAB的图形呈现[J]. 电子测试, 2013(5): 220-221. LIU J, XIE R. The MATLAB sketch description of the rotate light phenomenon[J]. Electronic Test, 2013(5): 220-221 (in Chinese). |