欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2023, Vol. 52 ›› Issue (3): 452-459.

• 研究论文 • 上一篇    下一篇

AlGaInN/InGaN应变补偿DBR结构设计

张君华1, 贾志刚1,2, 董海亮1,2, 臧茂荣1, 梁建1, 许并社1,2,3   

  1. 1.太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024;
    2.山西浙大新材料与化工研究院,太原 030000;
    3.陕西科技大学材料原子·分子科学研究所,西安 710021
  • 收稿日期:2022-12-07 出版日期:2023-03-15 发布日期:2023-04-06
  • 通信作者: 贾志刚,博士,讲师。E-mail:jiazhigang@tyut.edu.cn
  • 作者简介:张君华(1996—),女,山西省人,硕士研究生。E-mail:aishenghuo506@163.com
  • 基金资助:
    国家自然科学基金(21972103,61904120,61604104,51672185);山西浙大新材料与化工研究院研发项目(2021SX-AT001,2021SX-AT002)

Design of AlGaInN/InGaN Strain-Compensation DBR Structure

ZHANG Junhua1, JIA Zhigang1,2, DONG Hailiang1,2, ZANG Maorong1, LIANG Jian1, XU Bingshe1,2,3   

  1. 1. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China;
    3. Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
  • Received:2022-12-07 Online:2023-03-15 Published:2023-04-06

摘要: 设计了中心波长为520 nm的AlGaInN/InGaN 应变补偿分布布拉格反射镜(DBR)结构,通过调节组分参数实现应变补偿,使DBR整体应变为0,采用传输矩阵法,计算了Al0.7Ga0.3-xInxN/InGaN DBR、Al0.8Ga0.2-xInxN/InGaN DBR、Al0.9Ga0.1-xInxN/InGaN DBR的反射光谱。通过对DBR结构参数进行对比,优化了其结构和反射性能。首先对比高低折射率层生长顺序,发现对于Al0.8Ga0.14In0.06N/In0.123Ga0.877N DBR,先生长高折射率层时,反射率高达99.61%,而先生长低折射率层时,反射率仅为97.73%;然后对比奇数层DBR和偶数层DBR,发现两者的反射谱几乎重合,没有显著区别;通过研究DBR对数对反射率的影响,发现对数在20~30对时,反射率随着对数的增加明显上升,30~40对时反射率增长缓慢;最后研究了材料组分对反射谱的影响,发现Al组分高的DBR折射率差大,反射性能更优,而相同Al组分的AlGaInN中In含量越低反射率越高。考虑到DBR制备过程中可能出现的厚度和组分偏差,模拟了厚度和组分出现偏差时反射谱的变化,发现高低折射率层厚度每增加或减少1 nm,反射谱红移或蓝移4~5 nm;而组分的偏差使高反射带带宽和中心波长处反射率发生明显变化。本文的研究为AlGaInN/InGaN DBR的设计和制备提供了一定的理论参考。

关键词: AlGaInN, InGaN, 应变补偿, 分布布拉格反射镜, 厚度偏差, 组分偏差

Abstract: After adjusting the component parameters of the designed AlGaInN/InGaN DBR structure with a central wavelength of 520 nm, strain compensation was realized and the overall strain of DBR turned to 0. The transmission matrix method was used to calculate the reflectance spectra of Al0.7Ga0.3-xInxN/InGaN DBR, Al0.8Ga0.2-xInxN/InGaN DBR, and Al0.9Ga0.1-xInxN/InGaN DBR. By comparing the structure parameters of DBR, the structure and reflection performance of DBR are optimized. First, high and low refractive index layer growth sequence was compared for Al0.8Ga0.14In0.06N/In0.123Ga0.877N DBR. For DBR with first grown high refractive index layer, the reflectance is as high as 99.61%, while for DBR first grown low refractive index layer, the reflectance is only 97.73%. Then, by comparing the odd-layer DBR and even-layer DBR, it is found that the reflection spectra of the two layers are almost identical, and there is no significant difference. By comparing the periods of DBR, it is found that the reflectance increases obviously with the increase of period number between 20 and 30 pairs, while the reflectance increases slowly with the increase of period number between 30 and 40 pairs. At last, the influence of the material components on the reflection spectrum is studied. It is found that the DBR with high Al component has a large refractive index difference and better reflection performance, while the lower content of In in the same Al component AlGaInN, the higher the reflectivity. Due to the possible deviation of thickness and component in the preparation of DBR, the changes of reflection spectra resulted from the deviation of thickness and components were simulated. It is found that the reflection spectrum is red-shifted or blue-shifted by 4 nm to 5 nm when the layer thickness of high or low refractive index is increased or decreased by 1 nm. While the component deviations caused significant changes in high anti-band bandwidth and reflectivity at central wavelength. The study in this paper provides some theoretical reference for the design and preparation of AlGaInN/InGaN DBR.

Key words: AlGaInN, InGaN, strain-compensation, distributed bragg reflector, thickness deviation, component deviation

中图分类号: