[1] WARREN M E, GOURLEY P L, HADLEY G R, et al. On-axis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector[J]. Applied Physics Letters, 1992, 61(13): 1484-1486. [2] HAGLUND Å, HASHEMI E, BENGTSSON J, et al. Progress and challenges in electrically pumped GaN-based VCSELs[C]//SPIE Photonics Europe. Proc SPIE 9892, Semiconductor Lasers and Laser Dynamics Ⅶ, Brussels, Belgium. 2016, 9892: 161-180. [3] YANG X, LI M X, ZHAO G W, et al. Small-sized lithographic single-mode VCSELs with high-power conversion efficiency[C]//SPIE OPTO. Proc SPIE 9381, Vertical-Cavity Surface-Emitting Lasers XIX, San Francisco, California, USA. 2015, 9381: 197-202. [4] SHI J W, CHI K L, CHANG J H, et al. Single-mode vertical-cavity surface-emitting laser array with high power and narrow far-field divergence angle[J]. IEEE Photonics Journal, 2013, 5(6): 1502508. [5] SHIMADA R, MORKOÇ H. Wide bandgap semiconductor-based surface-emitting lasers: recent progress in GaN-based vertical cavity surface-emitting lasers and GaN-/ZnO-based polariton lasers[J]. Proceedings of the IEEE, 2010, 98(7): 1220-1233. [6] 许晓芳, 邓 军, 李建军, 等. 垂直腔面发射激光器DBR的生长优化[J]. 半导体光电, 2022, 43(2): 332-336. XU X F, DENG J, LI J J, et al. Growth optimization of vertical cavity surface-emitting laser DBR[J]. Semiconductor Optoelectronics, 2022, 43(2): 332-336 (in Chinese). [7] GEELS R S, CORZINE S W, SCOTT J W, et al. Low threshold planarized vertical-cavity surface-emitting lasers[J]. 1990: PD31. [8] BASHIR B. Designing of high reflectance distributed Bragg reflectors (DBRs), mirrors using AlGaInN material system in the UV wavelength range[R]. University of Gavle, 2009. [9] NAKADA N, NAKAJI M, ISHIKAWA H, et al. Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire[J]. Applied Physics Letters, 2000, 76(14): 1804-1806. [10] LI P C, ZHANG Y T, CHEN L, et al. Optimization design and preparation of near ultraviolet AlGaN/GaN distributed Bragg reflectors[J]. Superlattices and Microstructures, 2018, 122: 661-666. [11] LI P C, HAN X, YAN L, et al. The preparation of different pairs near-ultraviolet AlGaN/GaN DBRs with AlN interlayer[J]. Materials Science in Semiconductor Processing, 2018, 80: 162-166. [12] MOUDAKIR T, GAUTIER S, SURESH S, et al. Suppression of crack generation in AlGaN/GaN distributed Bragg reflectors grown by MOVPE[J]. Journal of Crystal Growth, 2013, 370: 12-15. [13] CARLIN J F, ILEGEMS M. High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN[J]. Applied Physics Letters, 2003, 83(4): 668-670. [14] KURAMOTO M, KOBAYASHI S, AKAGI T, et al. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide[J]. Applied Physics Letters, 2018, 112(11): 111104. [15] CHUNG R B, WU F, SHIVARAMAN R, et al. Growth study and impurity characterization of AlxIn1-x N grown by metal organic chemical vapor deposition[J]. Journal of Crystal Growth, 2011, 324(1): 163-167. [16] 徐 峰. 应变补偿AlInGaN超晶格材料研究与在光电子器件中的应用[D]. 南京: 南京大学, 2017: 56-57. XU F. Investigation on strain-compensated AlInGaN superlattice materials and its applications in optoelectronic devices[D]. Nanjing: Nanjing University, 2017: 56-57 (in Chinese). [17] NISHINAKA J, FUNATO M, KIDO R, et al. InGaN/AlGaN stress compensated superlattices coherently grown on semipolar (1122) GaN substrates[J]. Physica Status Solidi (b), 2016, 253(1): 78-83. [18] ANGERER H, BRUNNER D, FREUDENBERG F, et al. Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1-xN films[J]. Applied Physics Letters, 1997, 71(11): 1504-1506. [19] 刘亚莹. InGaN/AlGaInN量子阱发光特性的研究[D]. 南京: 南京大学, 2018. LIU Y Y. Study on the optical properties of InGaN/AlGaInN quantum wells[D]. Nanjing: Nanjing University, 2018 (in Chinese). [20] VURGAFTMAN I, MEYER J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 2003, 94(6): 3675-3696. |