[1] JIANG B B, LIU X X, WANG Q, et al. Realizing high-efficiency power generation in low-cost PbS-based thermoelectric materials[J]. Energy & Environmental Science, 2020, 13(2): 579-591. [2] WANG J Y, LIU B, MIAO N H, et al. I-doped Cu2Se nanocrystals for high-performance thermoelectric applications[J]. Journal of Alloys and Compounds, 2019, 772: 366-370. [3] TOSHIMA N. Recent progress of organic and hybrid thermoelectric materials[J]. Synthetic Metals, 2017, 225: 3-21. [4] FITRIANI, OVIK R, LONG B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 635-659. [5] WANG N, SONG G H, LI G P, et al. Thermoelectric properties of β-(Cu, Mn)2Se films with high (111) preferred orientation[J]. Vacuum, 2022, 197: 110845. [6] PENG P, GONG Z N, LIU F S, et al. Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm[J]. Intermetallics, 2016, 75: 72-78. [7] JUNG S C, HAN Y K. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17643-17649. [8] MAO J, ZHU H T, DING Z W, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials[J]. Science, 2019, 365(6452): 495-498. [9] SONG S W, MAO J, BORDELON M, et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5[J]. Materials Today Physics, 2019, 8: 25-33. [10] MAO J, WU Y X, SONG S W, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials[J]. ACS Energy Letters, 2017, 2(10): 2245-2250. [11] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2): 105-114. [12] ZHOU T, TONG M Y, ZHANG Y, et al. Topological phase transition in Sb-doped Mg3Bi2 monocrystalline thin films[J]. Physical Review B, 2021, 103(12): 125405. [13] LIANG Z, XU C, SHANG H, et al. High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3[J]. Materials Today Physics, 2021, 19: 100413. [14] MO X B, LIAO J S, YUAN G C, et al. High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping[J]. Journal of Magnesium and Alloys, 2022, 10(4): 1024-1032. [15] PAN Y, YAO M Y, HONG X C, et al. Mg3(Bi, Sb)2 single crystals towards high thermoelectric performance[J]. Energy & Environmental Science, 2020, 13(6): 1717-1724. [16] SHANG H, ZHANG J, GU H, et al. Depressed lattice oxygen and improved thermoelectric performance in N-type Mg3Bi2-Sb via La-doping[J]. Materials Today Physics, 2021, 21: 100485. [17] SADOWSKI G, ZHU Y B, SHU R, et al. Epitaxial growth and thermoelectric properties of Mg3Bi2 thin films deposited by magnetron sputtering[J]. Applied Physics Letters, 2022, 120(5): 051901. [18] FANG W Q, ZHU W Y , SHAO Y M, et al. Formation of metastable cubic phase and thermoelectric properties in Mg3Bi2 films deposited by magnetron sputtering[J]. Applied Surface Science, 2022, 596: 153602. [19] 宋贵宏, 李秀宇, 李贵鹏, 等. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842. SONG G H, LI X Y, LI G P, et al. Thermoelectric properties of Mg-rich Mg3Bi2 films prepared by magnetron sputtering[J]. Chinese Journal of Materials Research, 2021, 35(11): 835-842 (in Chinese). [20] SAFAVI M, MARTIN N, LINSERS V, et al. Thermoelectric properties improvement in Mg2Sn thin films by structural modification[J]. Journal of Alloys and Compounds, 2019, 797: 1078-1085. [21] LIU Y, SONG G H, LI G P, et al. Thin films of thermoelectric Mg2Sn containing nano-sized metal Sn phase by magnetron sputtering[J]. Chemical Physics Letters, 2022, 788: 139305. [22] ZHU C, ZHANG J, MING H W, et al. Enhanced thermoelectric performance of PbTe based materials by Bi doping and introducing MgO nanoparticles[J]. Applied Physics Letters, 2020, 117(4): 042105. |