欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1245-1255.DOI: 10.16553/j.cnki.issn1000-985x.2025.0049

• 研究论文 • 上一篇    下一篇

全无机锡钙钛矿CsSnBr3晶体的生长和电学、光学性能研究

萧岱桢(), 高荣, 陈怡, 米启兮()   

  1. 上海科技大学物质科学与技术学院,上海 201210
  • 收稿日期:2025-03-13 出版日期:2025-07-20 发布日期:2025-07-30
  • 通信作者: 米启兮,博士,研究员。E-mail:miqx@shanghaitech.edu.cn
  • 作者简介:萧岱桢(2000—),男,四川省人,硕士研究生。E-mail:dzxiao@yeah.net
    米启兮,上海科技大学物质科学与技术学院研究员、博士生导师、助理院长。主要从事材料物理化学和新型光电转化材料研究,对无铅钙钛矿(尤其是卤化锡钙钛矿)材料的成分-结构-物性关系及潜在的应用方向开展了系统研究工作。
  • 基金资助:
    国家自然科学基金(22075182)

Growth, Electrical and Optical Properties of All Inorganic Tin Perovskite CsSnBr3 Crystals

XIAO Daizhen(), GAO Rong, CHEN Yi, MI Qixi()   

  1. School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China
  • Received:2025-03-13 Online:2025-07-20 Published:2025-07-30

摘要: 使用布里奇曼法成功制备了?12 mm×35 mm的掺杂1%Sn(Ⅳ)与未掺杂的CsSnBr3晶体,并以溶液法生长的CsSnBr3晶体作为对照,对全部晶体样品进行了物相、电学和光学性质研究。CsSnBr3晶体属于立方晶系,空间群Pm3m。未掺杂的CsSnBr3的禁带宽度为1.79 eV,掺杂1%的Sn(Ⅳ)可以显著提升CsSnBr3晶体的载流子浓度及迁移率,其中载流子浓度从6.1×1016 cm-3提升至1.0×1018 cm-3,迁移率从5.7 cm2·V-1·s-1提升至36 cm2·V-1·s-1,迁移率达到和溶液法晶体相当的水平。CsSnBr3在约680 nm处存在荧光发射峰,Sn(Ⅳ)能抑制载流子的非辐射复合过程,减小非辐射复合概率,提高荧光强度,但不影响荧光寿命。经计算后发现在掺杂1%的Sn(Ⅳ)后,CsSnBr3晶体的少数载流子扩散长度达到了未掺杂时的近三倍。CsSnBr3晶体对化学计量比的偏离具有一定的容忍度,在±1%的偏离范围内,晶体性能不会受到显著影响,多余组分会以特定形式析出于晶体表面。本文认为少量的Sn(Ⅳ)可以增加锡钙钛矿材料的导电性,并可能保护晶界,削弱晶界处载流子的散射及非辐射复合。化学计量比容忍度的发现可以为制备锡钙钛矿材料提供原料配比的灵活性,加深对CsSnBr3晶体生长机制的理解,降低工艺难度。

关键词: CsSnBr3; 锡钙钛矿; 光电材料; 半导体晶体; 坩埚下降法; 载流子浓度; 迁移率

Abstract: ?12 mm×35 mm CsSnBr3 crystals doped with 1% Sn(Ⅳ) and undoped crystals were successfully prepared by Bridgman method, and the solution grown CsSnBr3 crystal was used as the control. The phase, electrical and optical properties of all crystal samples were studied. CsSnBr3 crystals belong to the cubic system with space group Pm3m. The band gap of undoped CsSnBr3 is 1.79 eV. The carrier concentration and mobility of CsSnBr3 crystals can be significantly improved by doping 1%Sn(Ⅳ), with the carrier concentration increasing from 6.1×1016 cm-3 to 1.0×1018 cm-3, and the mobility from 5.7 cm2·V-1·s-1 to 36 cm2·V-1·s-1. The mobility reaches the equivalent level of the solution method crystal. CsSnBr3 has a photoluminescence (PL) emission peak at about 680 nm. Sn(Ⅳ) can also inhibit the non-radiative recombination process of carriers, reducing the non-radiative recombination probability and improving the PL intensity, while the PL lifetime remains unaffected. Calculation results indicate that the minority carrier diffusion length of the CsSnBr3 crystal with 1% Sn(Ⅳ) is nearly three times as long as that of the undoped crystal. CsSnBr3 crystals exhibit tolerance to stoichiometric ratio deviations. Within the deviation range of ±1%, the crystal performance is not significantly affected, and the excess components are separated from the crystal surface in specific forms. It is concluded that a small amount of Sn(Ⅳ) can actually increase the conductivity of tin perovskite materials and may protect grain boundaries, weakening the scattering and the non-radiative recombination of carriers at grain boundaries. The discovery of stoichiometric tolerance provides flexibility in raw material ratio for the preparation of tin perovskite materials, deepens the understanding of the growth mechanism of CsSnBr3 crystal, and reduces the technical difficulty.

Key words: CsSnBr3; tin perovskite; optoelectronic material; semiconductor crystal; Bridgman method; carrier concentration; mobility

中图分类号: