| [1] |
HUANG J S, YUAN Y B, SHAO Y C, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials, 2017, 2: 17042.
|
| [2] |
DONG H, RAN C X, GAO W Y, et al. Metal halide perovskite for next-generation optoelectronics: progresses and prospects[J]. eLight, 2023, 3(1): 3.
|
| [3] |
Interactive best research-cell efficiency chart[EB/OL]. [2025-06-29]. .
|
| [4] |
GAO L K, ZHAO X H, DIAO X F, et al. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure[J]. Acta Physica Sinica, 2021, 70(15): 158801.
|
| [5] |
EPERON G E, HABISREUTINGER S N, LEIJTENS T, et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication[J]. ACS Nano, 2015, 9(9): 9380-9393.
|
| [6] |
BABAYIGIT A, ETHIRAJAN A, MULLER M, et al. Toxicity of organometal halide perovskite solar cells[J]. Nature Materials, 2016, 15(3): 247-251.
|
| [7] |
DE ANGELIS F. The prospect of lead-free perovskite photovoltaics[J]. ACS Energy Letters, 2021, 6(4): 1586-1587.
|
| [8] |
FAN Q Q, BIESOLD-MCGEE G V, MA J Z, et al. Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties[J]. Angewandte Chemie International Edition, 2020, 59(3): 1030-1046.
|
| [9] |
HU H, DONG B H, ZHANG W. Low-toxic metal halide perovskites: opportunities and future challenges[J]. Journal of Materials Chemistry A, 2017, 5(23): 11436-11449.
|
| [10] |
RADHA S K, BHANDARI C, LAMBRECHT W R L. Distortion modes in halide perovskites: to twist or to stretch, a matter of tolerance and lone pairs[J]. Physical Review Materials, 2018, 2(6): 063605.
|
| [11] |
LI B H, LONG R Y, XIA Y, et al. All-inorganic perovskite CsSnBr3 as a thermally stable, free-carrier semiconductor[J]. Angewandte Chemie International Edition, 2018, 57(40): 13154-13158.
|
| [12] |
刘 东. 全无机无铅钙钛矿CsSnBr3的光电探测性能研究[D]. 济南: 山东大学, 2023.
|
|
LIU D. An investigation on photodetection properties of lead-freee all-inorganic CsSnBr3 perovskite[D]. Jinan: Shandong University, 2023 (in Chinese).
|
| [13] |
YAN W T, SUN Y, ZHAO X K, et al. Carrier mobilities and band alignments of inorganic perovskites of CsBX3 [J]. Journal of Materials Chemistry C, 2024, 12(28): 10733-10741.
|
| [14] |
HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18): 8207-8215.
|
| [15] |
HUANG X, TANG X B, WEN X Y, et al. Solventless mechanochemical synthesis of Sn-based halide perovskite microcrystals with high stability tracked by photoluminescence spectroscopy[J]. Journal of Luminescence, 2024, 269: 120432.
|
| [16] |
WANG A F, GUO Y Y, MUHAMMAD F, et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability[J]. Chemistry of Materials, 2017, 29(15): 6493-6501.
|
| [17] |
HEAVENS O S. Handbook of optical constants of solids II[J]. Journal of Modern Optics, 1992, 39(1): 189.
|
| [18] |
LIANG Y F, YANG Y P, WANG J B, et al. Pressure-regulated exciton engineering in two-dimensional perovskite OA2PbI4 [J]. Optical Materials, 2025, 167: 117323.
|
| [19] |
CODURI M, STROBEL T A, SZAFRAŃSKI M, et al. Band gap engineering in MASnBr3 and CsSnBr3 perovskites: mechanistic insights through the application of pressure[J]. The Journal of Physical Chemistry Letters, 2019, 10(23): 7398-7405.
|
| [20] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 2005, 220(5/6): 567-570.
|
| [21] |
GONZE X. First-principles responses of solids to atomic displacements and homogeneous electric fields: implementation of a conjugate-gradient algorithm[J]. Physical Review B, 1997, 55(16): 10337-10354.
|
| [22] |
熊志华, 孙振辉, 雷敏生. 基于密度泛函理论的第一性原理赝势法[J]. 江西科学, 2005, 23(1): 1-4.
|
|
XIONG Z H, SUN Z H, LEI M S. First-principles with pseudopotentials method based on the density functional theory[J]. Jiangxi Science, 2005, 23(1): 1-4 (in Chinese).
|
| [23] |
DEÁK P, ARADI B, FRAUENHEIM T, et al. Accurate defect levels obtained from the HSE06 range-separated hybrid functional[J]. Physical Review B, 2010, 81(15): 153203.
|
| [24] |
HEYD J, SCUSERIA G E. Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional[J]. The Journal of Chemical Physics, 2004, 121(3): 1187-1192.
|
| [25] |
HUANG L Y, LAMBRECHT W R L. Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 [J]. Physical Review B, 2013, 88(16): 165203.
|
| [26] |
CLARK S J, ROBERTSON J. Screened exchange density functional applied to solids[J]. Physical Review B, 2010, 82(8): 085208.
|
| [27] |
HOSSAIN M S, HAQUE BABU M M, SAHA T, et al. Pressure induced semiconductor to metal phase transition in cubic CsSnBr3 perovskite[J]. AIP Advances, 2021, 11(5): 055024.
|
| [28] |
MESQUITA I, ANDRADE L, MENDES A. Temperature impact on perovskite solar cells under operation[J]. ChemSusChem, 2019, 12(10): 2186-2194.
|
| [29] |
KUOK M H, TAN L S, SHEN Z X, et al. A Raman study of RbSnBr3 [J]. Solid State Communications, 1996, 97(6): 497-501.
|
| [30] |
SUN S Y, SALIM T, MATHEWS N, et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy & Environmental Science, 2014, 7(1): 399-407.
|
| [31] |
SAVENIJE T J, PONSECA C S, KUNNEMAN L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite[J]. The Journal of Physical Chemistry Letters, 2014, 5(13): 2189-2194.
|
| [32] |
LIANG Y F, YANG Y P, WANG J B, et al. Structural and photophysical properties of two-dimensional lead bromide hybrid perovskite (C8H17NH3)2PbBr4 [J]. Journal of Molecular Structure, 2024, 1313: 138755.
|