
人工晶体学报 ›› 2026, Vol. 55 ›› Issue (1): 37-45.DOI: 10.16553/j.cnki.issn1000-985x.2025.0165
收稿日期:2025-07-29
出版日期:2026-01-20
发布日期:2026-02-05
通信作者:
阳禹辉
作者简介:姚志远(1999—),男,浙江省人,硕士研究生。E-mail:zychildofgod@163.com
基金资助:
YAO Zhiyuan(
), YANG Yuhui(
), ZUO Biao
Received:2025-07-29
Online:2026-01-20
Published:2026-02-05
Contact:
YANG Yuhui
摘要: 4,4',4''-三(咔唑-9-基)-三苯胺(TCTA)是光电器件中常见的有机半导体材料,其结晶行为对器件的光电特性至关重要。然而,研究人员目前对TCTA多晶型结构及其晶体生长动力学过程尚缺乏深入的认识。本研究利用偏光显微镜(POM)及原子力显微镜(AFM),系统研究了TCTA薄膜中多晶型结构的形成条件及晶体生长动力学。结果表明,TCTA薄膜中存在两种熔点差异显著的晶型结构,但当薄膜厚度小于80 nm时,仅观察到熔点较低的晶型Ⅰ。晶体生长动力学分析表明,低熔点晶型的晶体生长速率更快,活化能更低。本工作深化了对TCTA薄膜结晶行为的理解,为调控其微观结构及其均匀性,进而提升器件性能提供了重要依据。
中图分类号:
姚志远, 阳禹辉, 左彪. TCTA薄膜多晶型结构与晶体生长动力学[J]. 人工晶体学报, 2026, 55(1): 37-45.
YAO Zhiyuan, YANG Yuhui, ZUO Biao. Polymorphic Structures and Crystal Growth Kinetics in TCTA Thin Films[J]. Journal of Synthetic Crystals, 2026, 55(1): 37-45.
图1 TCTA薄膜的形貌及Tg表征。(a)TCTA薄膜的光学显微镜图像,插图为TCTA分子的结构式;(b)TCTA薄膜的AFM照片;(c)不同厚度的TCTA薄膜归一化厚度与温度的关系;(d)TCTA薄膜的Tg与厚度的关系
Fig.1 Characterization of morphology and Tg of TCTA thin films. (a) Optical microscopy image of TCTA thin film, inset shows chemical structure of TCTA molecule; (b) AFM image of TCTA thin film; (c) normalized thicknessversus temperature for TCTA thin films with different initial thicknesses; (d) relationship between Tg and film thickness of TCTA thin films
图2 TCTA薄膜中两种不同晶体的形貌。(a)两种不同晶体的光学显微镜图像;(b)、(c)两种晶体Ⅰ、Ⅱ的AFM照片;(d)、(e)两种晶体Ⅰ、Ⅱ边缘区域的形貌;(f)、(g)图(d)、(e)中标记线的剖面高度曲线
Fig.2 Morphology of two distinct crystals in TCTA thin film. (a) Optical microscopy image of two different crystals; (b), (c) AFM images of Form Ⅰ and Form Ⅱ crystals, respectively; (d), (e) morphology of edges of Form Ⅰ and Form Ⅱ crystals, respectively; (f), (g) height profiles corresponding to lines marked in (d) and (e), respectively
图3 269 ℃(a)和296 ℃(b)热处理不同时间后TCTA两种晶体熔融过程的形态演变光学显微镜图像
Fig.3 Morphological evolution optical microscopy images of melting process of two TCTA crystals after heat treatment at 269 ℃ (a) and 296 ℃ (b) for varying durations, respectively
图4 偏光显微镜观察的不同厚度TCTA薄膜在不同温度下的多晶型结构分布图
Fig.4 Polymorphic distribution maps of TCTA thin films with different thicknesses observed by POM at different temperatures
图5 TCTA两种晶型的晶体生长动力学及活化能。晶型Ⅰ(a)和晶型Ⅱ(b)在180 ℃下等温生长的光学显微镜图像;(c)晶型Ⅰ和晶型Ⅱ在180 ℃下晶体半径随时间的变化关系;(d)晶体生长速率与温度的关系
Fig.5 Crystal growth kinetics and activation energy for two polymorphs of TCTA. Optical microscopy images showing isothermal growth of Form Ⅰ (a) and Form Ⅱ (b) crystals at 180 ℃; (c) evolution of crystal radius versus time for both polymorphs at 180 ℃; (d) temperature dependence of crystal growth rates for both polymorphs
图6 TCTA两种晶型的等温生长速率的膜厚依赖性。不同厚度TCTA薄膜中晶型Ⅰ(a)和晶型Ⅱ(b)的晶体半径随时间的变化关系;(c)晶型Ⅰ和晶型Ⅱ的晶体生长速率与薄膜厚度的关系
Fig.6 Film thickness dependence of isothermal growth rates of two polymorphs of TCTA. Evolution of crystal radius versus time for Form Ⅰ (a) and Form Ⅱ (b) in TCTA thin films of different thicknesses; (c) dependence of crystal growth rates on film thickness for Form Ⅰ and Form Ⅱ
| [1] | OHISA S, PU Y J, YAMADA N L, et al. Molecular interdiffusion between stacked layers by solution and thermal annealing processes in organic light emitting devices[J]. ACS Applied Materials & Interfaces, 2015, 7(37): 20779-20785. |
| [2] | HISZPANSKI A M, BAUR R M, KIM B, et al. Tuning polymorphism and orientation in organic semiconductor thin films via post-deposition processing[J]. Journal of the American Chemical Society, 2014, 136(44): 15749-15756. |
| [3] | DING Y Q, YI Z Y, WANG Z H, et al. Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors[J]. Chinese Chemical Letters, 2024, 35(12): 109918. |
| [4] | 加雪峰, 阮 妙, 叶林峰, 等. 咪唑基离子液修饰钙钛矿太阳能电池及其性能研究[J]. 人工晶体学报, 2025, 54(5): 864-872. |
| JIA X F, RUAN M, YE L F, et al. Imidazolium ionic liquid-modified perovskite solar cells and its performance characteristics[J]. Journal of Synthetic Crystals, 2025, 54(5): 864-872 (in Chinese). | |
| [5] | WAN J, LI Y, ULBRANDT J G, et al. Transient phases during fast crystallization of organic thin films from solution[J]. APL Materials, 2016, 4: 016103. |
| [6] | YANG H, SHIN T J, LING M M, et al. Conducting AFM and 2D GIXD studies on pentacene thin films[J]. Journal of the American Chemical Society, 2005, 127(33): 11542-11543. |
| [7] | CHEN M, PENG B Y, GUO X Y, et al. Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors[J]. Chinese Chemical Letters, 2024, 35(4): 109051. |
| [8] | 孙元龙, 胡子钰, 郑国宗. 大尺寸CH3NH3PbBr3晶体生长和光电性能表征[J]. 人工晶体学报, 2024, 53(8): 1313-1318. |
| SUN Y L, HU Z Y, ZHENG G Z. Growth and photoelectric properties characterization of large-sized CH3NH3PbBr3 crystal[J]. Journal of Synthetic Crystals, 2024, 53(8): 1313-1318 (in Chinese). | |
| [9] | FRIEDERICH P, MEDED V, POSCHLAD A, et al. Molecular origin of the charge carrier mobility in small molecule organic semiconductors[J]. Advanced Functional Materials, 2016, 26(31): 5757-5763. |
| [10] | LI Z, ZHANG X, ZHANG Y, et al. Hole transport in diketopyrrolopyrrole (DPP) small molecules: a joint theoretical and experimental study[J]. The Journal of Physical Chemistry C, 2013, 117(13): 6730-6740. |
| [11] | YANG Y H, HONG Y M, WANG X P. Utilizing the diffusion of fluorinated polymers to modify the semiconductor/dielectric interface in solution-processed conjugated polymer field-effect transistors[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8682-8691. |
| [12] | WANG J T, SHI X L, LIU W W, et al. Influence of preferred orientation on the electrical conductivity of fluorine-doped tin oxide films[J]. Scientific Reports, 2014, 4: 3679. |
| [13] | 郑 权, 刘学超, 王 浩, 等. 铝掺杂对硒化铟晶体结构与性能的影响[J]. 人工晶体学报, 2024, 53(9): 1528-1535. |
| ZHENG Q, LIU X C, WANG H, et al. Effect of aluminum doping on the crystal structure and properties of indium selenide crystals[J]. Journal of Synthetic Crystals, 2024, 53(9): 1528-1535 (in Chinese). | |
| [14] | 韩 宇, 焦 腾, 于 含, 等. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444. |
| HAN Y, JIAO T, YU H, et al. Effect of substrate crystal planes on the properties of homoepitaxial n-Ga2O3 thin films grown by MOCVD[J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444 (in Chinese). | |
| [15] | HE X L, CHEN H, YANG J B, et al. Enhancing hole transport uniformity for efficient inverted perovskite solar cells through optimizing buried interface contacts and suppressing interface recombination[J]. Angewandte Chemie (International Ed), 2024, 63(52): e202412601. |
| [16] | DULL J T, WANG Y C, JOHNSON H, et al. Thermal properties, molecular structure, and thin-film organic semiconductor crystallization[J]. The Journal of Physical Chemistry C, 2020, 124(49): 27213-27221. |
| [17] | GAO M L, JANG J, LEITNER T, et al. Effect of host generation on the luminescent and charge transporting properties of solution processed OLEDs[J]. Advanced Materials Interfaces, 2021, 8(20): 2100820. |
| [18] | ZHANG J F, XU X J, YAO C, et al. A novel ternary organic microwire radial heterojunction with high photoconductivity[J]. Journal of Materials Chemistry C, 2016, 4(20): 4505-4511. |
| [19] | PAN B, HUANG H, YANG X, et al. Systematic study of TCTA-based star-shaped host materials by optimizing ratio of carbazole/diphenylphosphine oxide: achieving both low efficiency roll-off and turn-on voltage for blue PHOLEDs[J]. Journal of Materials Chemistry C, 2014, 2(35): 7428-7435. |
| [20] | PARK J J, PARK T J, JEON W S, et al. Small molecule interlayer for solution processed phosphorescent organic light emitting device[J]. Organic Electronics, 2009, 10(1): 189-193. |
| [21] | FELEKI B T, WEIJTENS C H L, WIENK M M, et al. Thin thermally evaporated organic hole transport layers for reduced optical losses in substrate-configuration perovskite solar cells[J]. ACS Applied Energy Materials, 2021, 4(4): 3033-3043. |
| [22] | HO M D, KIM D, KIM N, et al. Polymer and small molecule mixture for organic hole transport layers in quantum dot light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2013, 5(23): 12369-12374. |
| [23] | PORIEL C, RAULT-BERTHELOT J. Designing host materials for the emissive layer of single-layer phosphorescent organic light-emitting diodes: toward simplified organic devices[J]. Advanced Functional Materials, 2021, 31(24): 2010547. |
| [24] | 丁 羽, 张金才, 王宝凤, 等. 电石渣可控制备多晶型、多形貌纳米碳酸钙的研究进展[J]. 人工晶体学报, 2023, 52(4): 710-720. |
| DING Y, ZHANG J C, WANG B F, et al. Progress on controllable preparation of polycrystalline and polymorphic nano calcium carbonate by calcium carbide slag[J]. Journal of Synthetic Crystals, 2023, 52(4): 710-720 (in Chinese). | |
| [25] | 宋舒虹, 姚昌林, 王 蕾, 等. 药物结晶中的经典与非经典结晶路径[J]. 人工晶体学报, 2021, 50(4): 669-684. |
| SONG S H, YAO C L, WANG L, et al. Classical and non-classical crystallization pathways in pharmaceutical crystallization[J]. Journal of Synthetic Crystals, 2021, 50(4): 669-684 (in Chinese). | |
| [26] | 李 佳, 袁仲纯, 姚梦琴, 等. 多晶型MnO2-Ru复合催化剂的制备及其电催化水解析氧性能的研究[J]. 人工晶体学报, 2024, 53(2): 336-343. |
| LI J, YUAN Z C, YAO M Q, et al. Preparation of polymorph MnO2-Ru composite catalyst and its electrocatalytic performance for oxygen evolution in water[J]. Journal of Synthetic Crystals, 2024, 53(2): 336-343 (in Chinese). | |
| [27] | SUN Y, ZHU L, KEARNS K L, et al. Glasses crystallize rapidly at free surfaces by growing crystals upward[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 5990-5995. |
| [28] | DIAO Y, LENN K M, LEE W Y, et al. Understanding polymorphism in organic semiconductor thin films through nanoconfinement[J]. Journal of the American Chemical Society, 2014, 136(49): 17046-17057. |
| [29] | YAO X, LIU Q T, WANG B, et al. Anisotropic molecular organization at a liquid/vapor interface promotes crystal nucleation with polymorph selection[J]. Journal of the American Chemical Society, 2022, 144(26): 11638-11645. |
| [30] | FUJII Y, YANG Z H, LEACH J, et al. Affinity of polystyrene films to hydrogen-passivated silicon and its relevance to the Tg of the films[J]. Macromolecules, 2009, 42(19): 7418-7422. |
| [31] | YANG H N, HE S J, ZHANG T, et al. Molecular orientation and thermal stability of thin-film organic semiconductors[J]. Organic Electronics, 2021, 88: 106014. |
| [32] | HASEBE M, MUSUMECI D, POWELL C T, et al. Fast surface crystal growth on molecular glasses and its termination by the onset of fluidity[J]. The Journal of Physical Chemistry B, 2014, 118(27): 7638-7646. |
| [33] | OSTWALD W. Studien über die bildung und umwandlung fester Körper[J]. Zeitschrift Für Physikalische Chemie, 1897, 22U(1): 289-330. |
| [34] | WU K J, TSE E C M, SHANG C X, et al. Nucleation and growth in solution synthesis of nanostructures—from fundamentals to advanced applications[J]. Progress in Materials Science, 2022, 123: 100821. |
| [35] | ZHU D S, LIU Y X, CHEN E Q, et al. Crystal growth mechanism changes in pseudo-dewetted poly(ethylene oxide) thin layers[J]. Macromolecules, 2007, 40(5): 1570-1578. |
| [36] | WU T, YU L. Surface crystallization of indomethacin below Tg [J]. Pharmaceutical Research, 2006, 23(10): 2350-2355. |
| [37] | BAGCHI K, DENG C T, BISHOP C, et al. Over what length scale does an inorganic substrate perturb the structure of a glassy organic semiconductor?[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26717-26726. |
| [38] | FERRON T J, THELEN J L, BAGCHI K, et al. Characterization of the interfacial orientation and molecular conformation in a glass-forming organic semiconductor[J]. ACS Applied Materials & Interfaces, 2022, 14(2): 3455-3466. |
| [1] | 梁永福, 杨豫萍, 程学瑞. 全无机钙钛矿铯锡溴的光学性质研究[J]. 人工晶体学报, 2026, 55(1): 103-110. |
| [2] | 杨季薇, 董玲, 谷东, 徐华蕊, 赵昀云, 杨涛, 李海平, 李杰, 朱归胜. 透明导电薄膜的红外可见光兼容隐身的厚度依赖性研究[J]. 人工晶体学报, 2025, 54(9): 1614-1621. |
| [3] | 李祥, 庞俊, 王茗, 罗毅, 龚瑞, 赵建华, 于杰. 无铅液相外延法制备Bi掺杂Re3Fe5O12磁光薄膜[J]. 人工晶体学报, 2025, 54(9): 1600-1606. |
| [4] | 谷东, 董玲, 杨季薇, 李海平, 李杰, 朱归胜, 徐华蕊. 基于ITO/Al/ITO结构的红外-可见光兼容隐身薄膜制备与性能研究[J]. 人工晶体学报, 2025, 54(9): 1607-1613. |
| [5] | 姚函妤, 陈楷, 易雨薇, 周延琪, 李霜, 唐群涛. 热处理温度与Er掺杂量对氧化镍薄膜光学与电学特性的影响[J]. 人工晶体学报, 2025, 54(9): 1622-1632. |
| [6] | 杨帆, 张思媛, 董武佩, 王希正, 周铭, 居佃兴. 英寸级(C24H20P)2MnBr4单晶薄膜生长及高分辨率X射线成像[J]. 人工晶体学报, 2025, 54(7): 1289-1296. |
| [7] | 单衍苏, 李兴牧, 王霞, 吴德华, 曹丙强. 全无机卤化物钙钛矿薄膜外延生长研究进展[J]. 人工晶体学报, 2025, 54(7): 1208-1220. |
| [8] | 赵昊, 余博文, 李琪, 李光清, 刘医源, 林娜, 李阳, 穆文祥, 贾志泰. Mist-CVD法生长LiGa5O8单晶薄膜及其导电机理研究[J]. 人工晶体学报, 2025, 54(6): 997-1004. |
| [9] | 李亚洲, 马占红, 姚威振, 杨少延, 刘祥林, 李成明, 王占国. MOCVD载气流量对GaN外延生长的影响[J]. 人工晶体学报, 2025, 54(6): 979-985. |
| [10] | 李翔, 陈根, 沈洁, 祝铭辉. 衬底类型对生长多晶金刚石膜应力和结晶度影响研究[J]. 人工晶体学报, 2025, 54(6): 986-996. |
| [11] | 朱家怡, 杜帅, 周鹏飞, 郑凡, 陈云琳. LiNbO3/ITO异质结薄膜的制备及光电性质研究[J]. 人工晶体学报, 2025, 54(5): 819-824. |
| [12] | 张献, 岳志昂, 赵恩钦, 魏帅康, 叶文轩, 黄敏怡, 辛美波, 赵洋, 王辉. Ga2O3∶Si薄膜制备及其日盲紫外光电探测器性能研究[J]. 人工晶体学报, 2025, 54(3): 462-469. |
| [13] | 胡继超, 赵启阳, 杨志昊, 杨莺, 彭博, 丁雄杰, 刘薇, 张红. 镓源温度对LPCVD氧化镓外延温度场影响的仿真研究[J]. 人工晶体学报, 2025, 54(3): 452-461. |
| [14] | 张子琦, 杨珍妮, 况思良, 魏盛龙, 徐文静, 陈端阳, 齐红基, 张洪良. MBE同质外延生长Sn掺杂β-Ga2O3(010)薄膜的电子输运性质研究[J]. 人工晶体学报, 2025, 54(2): 244-254. |
| [15] | 李悌涛, 卢耀平, 陈端阳, 齐红基, 张海忠. 氧化镓同质外延及二维“台阶流”生长研究[J]. 人工晶体学报, 2025, 54(2): 219-226. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS