
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (8): 1379-1387.DOI: 10.16553/j.cnki.issn1000-985x.2024.0324
收稿日期:2024-12-23
出版日期:2025-08-20
发布日期:2025-09-01
通信作者:
高 湉,博士,教授。E-mail:作者简介:朱雨革(1999—),女,河南省人,硕士研究生。E-mail:zhuyuge1004@163.com
基金资助:
ZHU Yuge(
), CHENG Xuyi, GAO Tian(
)
Received:2024-12-23
Online:2025-08-20
Published:2025-09-01
摘要: 在凝聚态物理领域,随着高压实验技术不断取得进步,探究材料在高温、高压、强磁场等环境下的物理性质已成为切实可行且行之有效的研究路径。锰酸盐的晶体结构和物理化学性质相对稳定,具有成本较为低廉的优势,通过调节居里温度可以使锰酸盐在室温附近表现出合适的磁热性能。本文概述了近年来极端条件下不同带宽类型掺杂锰酸盐材料磁热效应的研究进展,重点强调了压力在调控磁性材料的磁有序强度和温度、相变特征及磁热性能等方面的特殊作用。
中图分类号:
朱雨革, 程栩逸, 高湉. 高压调控锰酸盐晶体磁热效应的研究进展[J]. 人工晶体学报, 2025, 54(8): 1379-1387.
ZHU Yuge, CHENG Xuyi, GAO Tian. Research Progress on Modulating the Magnetocaloric Effect of Manganate Crystals under High Pressure[J]. Journal of Synthetic Crystals, 2025, 54(8): 1379-1387.
图2 在常压(a)和6 GPa(b)高压下合成的La0.75Sr0.25Mn0.9Co0.1O3在0~7 T磁场下的等温磁熵变化[30]
Fig.2 Isothermal magnetic entropy changes of La0.75Sr0.25Mn0.9Co0.1O3 synthesized at atmospheric pressure (a) and high pressure of 6 GPa (b) under 0~7 T magnetic field[30]
图3 La0.35Pr0.35Ca0.3MnO3最大磁熵变随磁场(a)和压力(b)的变化[33]
Fig.3 Variation of maximum magnetic entropy change with magnetic field (a) and pressure (b) for La0.35Pr0.35Ca0.3MnO3[33]
图4 La0.35Pr0.35Ca0.3MnO3样品RCP随磁场(a)和压力(b)的变化[33]
Fig.4 Variation of RCP with magnetic field (a) and pressure (b) for La0.35Pr0.35Ca0.3MnO3 samples[33]
图5 La1-x Na x MnO3 (x=0.05和0.1)在不同磁场下的熵变。(a),(b)环境压力; (c),(d)1.1 GPa压力,插图为不同磁场下的相对制冷能力[38]
Fig.5 Entropy change of La1-x Na x MnO3 (x=0.05 and 0.1) at different magnetic fields. (a), (b) At ambient pressure; (c), (d) at 1.1 GPa pressure, the inset shows relative cooling capacity under different magnetic fields[38]
| Composition | TC/K | Δµ0H/T | P/GPa | -ΔSmmax/(J·kg-1·K-1) | RCP/(J·kg-1) | Morphology | Reference |
|---|---|---|---|---|---|---|---|
| La0.8Sr0.2MnO3 | 302 | 5 | 0.677 | ~5.75 | — | Single | [ |
| La0.4Bi0.3Sr0.3MnO3 | 240 | 5 | 0.91 | 3.1 | — | Polycrystalline | [ |
| La0.75Sr0.25Mn0.9Co0.1O3 | 243 | 7 | 4 | 3.75 | 404.78 | Polycrystalline | [ |
| La0.75Sr0.25MnO3 | 325 | 7 | 6 | 5.21 | 364.52 | Polycrystalline | [ |
| La0.75Sr0.25Mn0.9Co0.1O3 | 270 | 7 | 6 | 4.23 | 384.62 | ||
| La0.75Sr0.25Mn0.9Co0.2O3 | 211 | 7 | 6 | 3.53 | 384.66 | ||
| La0.75Sr0.25Mn0.9Co0.1O3 | 292 | 7 | 0 | 4.96 | 365.50 | Polycrystalline | [ |
| 274 | 7 | 6 | 3.95 | 403.92 | |||
| La0.69Ca0.31MnO3 | 213.5 | 5 | 0 | 8.5 | — | Single | [ |
| 236.5 | 5 | 1.1 | ~8.4 | ||||
| La0.7Ca0.3MnO3 | 268.5 | 5 | 1.1 | ~7.7 | — | Single | [ |
| La0.35Pr0.35Ca0.3MnO3 | 167 | 5 | 0.91 | 7.26 | 310 | Polycrystalline | [ |
| Pr0.6Ca0.4Mn0.96Co0.04O3 | 105.6 | 5 | 0.91 | ~5.5 | ~305 | Polycrystalline | [ |
| Pr0.6Ca0.4Mn0.96Cr0.04O3 | 133 | 5 | 0.95 | ~5.1 | ~308 | ||
| (Sm0.8Nd0.2)0.52Sr0.48MnO3 | 136 | 5 | 1.17 | ~5.9 | ~145 | Single | [ |
| La0.95Na0.05MnO3 | 249.7 | 3 | 1.1 | 5.66 | ~148 | Polycrystalline | [ |
| La0.9Na0.1MnO3 | 269.6 | 5.12 | 106.9 | Polycrystalline | |||
| La0.7K0.2Mn1.1O3 | 287 | 1 | 1.4 | 1.44 | 37 | Polycrystalline | [ |
| La0.8Na0.2MnO3 | 320 | 1 | 0.8 | 0.92 | 40.8 | Polycrystalline | [ |
| La0.75Cd0.05Na0.2MnO3 | 316 | 0.93 | 44.3 |
表1 压力下的掺杂锰酸盐晶体的最大磁熵变和相对制冷能力
Table 1 Maximum magnetic entropy change and relative cooling capacity of doped manganate crystals under pressure
| Composition | TC/K | Δµ0H/T | P/GPa | -ΔSmmax/(J·kg-1·K-1) | RCP/(J·kg-1) | Morphology | Reference |
|---|---|---|---|---|---|---|---|
| La0.8Sr0.2MnO3 | 302 | 5 | 0.677 | ~5.75 | — | Single | [ |
| La0.4Bi0.3Sr0.3MnO3 | 240 | 5 | 0.91 | 3.1 | — | Polycrystalline | [ |
| La0.75Sr0.25Mn0.9Co0.1O3 | 243 | 7 | 4 | 3.75 | 404.78 | Polycrystalline | [ |
| La0.75Sr0.25MnO3 | 325 | 7 | 6 | 5.21 | 364.52 | Polycrystalline | [ |
| La0.75Sr0.25Mn0.9Co0.1O3 | 270 | 7 | 6 | 4.23 | 384.62 | ||
| La0.75Sr0.25Mn0.9Co0.2O3 | 211 | 7 | 6 | 3.53 | 384.66 | ||
| La0.75Sr0.25Mn0.9Co0.1O3 | 292 | 7 | 0 | 4.96 | 365.50 | Polycrystalline | [ |
| 274 | 7 | 6 | 3.95 | 403.92 | |||
| La0.69Ca0.31MnO3 | 213.5 | 5 | 0 | 8.5 | — | Single | [ |
| 236.5 | 5 | 1.1 | ~8.4 | ||||
| La0.7Ca0.3MnO3 | 268.5 | 5 | 1.1 | ~7.7 | — | Single | [ |
| La0.35Pr0.35Ca0.3MnO3 | 167 | 5 | 0.91 | 7.26 | 310 | Polycrystalline | [ |
| Pr0.6Ca0.4Mn0.96Co0.04O3 | 105.6 | 5 | 0.91 | ~5.5 | ~305 | Polycrystalline | [ |
| Pr0.6Ca0.4Mn0.96Cr0.04O3 | 133 | 5 | 0.95 | ~5.1 | ~308 | ||
| (Sm0.8Nd0.2)0.52Sr0.48MnO3 | 136 | 5 | 1.17 | ~5.9 | ~145 | Single | [ |
| La0.95Na0.05MnO3 | 249.7 | 3 | 1.1 | 5.66 | ~148 | Polycrystalline | [ |
| La0.9Na0.1MnO3 | 269.6 | 5.12 | 106.9 | Polycrystalline | |||
| La0.7K0.2Mn1.1O3 | 287 | 1 | 1.4 | 1.44 | 37 | Polycrystalline | [ |
| La0.8Na0.2MnO3 | 320 | 1 | 0.8 | 0.92 | 40.8 | Polycrystalline | [ |
| La0.75Cd0.05Na0.2MnO3 | 316 | 0.93 | 44.3 |
| [1] | XIANG J S, ZHANG C D, GAO Y, et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2[J]. Nature, 2024, 625(7994): 270-275. |
| [2] | SHENG J C, XU J W, XI L, et al. Stable magnetocaloric effect over an ultrawide temperature range of 146-320 K via hydrostatic pressure in kagome magnets[J]. Applied Physics Letters, 2025, 126(3): 032404. |
| [3] | TIAN L, MO Z J, SUN H B, et al. High-performance magnetic refrigeration materials: prediction and realization[J]. Journal of Alloys and Compounds, 2024, 991: 174519. |
| [4] | ZHOU X Y, SHANG Y F, LUO T, et al. Large rotating magnetocaloric effect of textured polycrystalline HoB2 alloy contributed by anisotropic ferromagnetic susceptibility[J]. Applied Physics Letters, 2022, 120(13): 132401. |
| [5] | WANG Y J, PAN H D, LIU S. Research progress of high efficiency magnetic refrigeration technology and magnetic materials[J]. Journal of Superconductivity and Novel Magnetism, 2025, 38(1): 86. |
| [6] | WANG Q W, WU Q, CHENG H F, et al. Review of the research on oxides in low-temperature magnetic refrigeration[J]. Journal of the European Ceramic Society, 2023, 43(15): 6665-6680. |
| [7] | DAN’KOV S Y, TISHIN A M, PECHARSKY V K, et al. Magnetic phase transitions and the magnetothermal properties of gadolinium[J]. Physical Review B, 1998, 57(6): 3478-3490. |
| [8] | YU B F, GAO Q, ZHANG B, et al. Review on research of room temperature magnetic refrigeration[J]. International Journal of Refrigeration, 2003, 26(6): 622-636. |
| [9] | 胡 鹏, 朱晓明, 王军涛, 等. 钆基配位聚合物分子磁制冷材料研究进展[J]. 人工晶体学报, 2020, 49(12): 2383-2388. |
| HU P, ZHU X M, WANG J T, et al. Research progress on Gd-based coordination polymer molecular magnetic refrigeration materials[J]. Journal of Synthetic Crystals, 2020, 49(12): 2383-2388 (in Chinese). | |
| [10] | NEHAN P Z Z, VITAYAYA O, MUNAZAT D R, et al. The magnetocaloric effect properties for potential applications of magnetic refrigerator technology: a review[J]. Physical Chemistry Chemical Physics, 2024, 26(20): 14476-14504. |
| [11] | AL-YAHMADI I Z, GISMELSEED A, WIDATALLAH H M, et al. Enhancement of the magnetocaloric effect in Nd0.6- x Gd x Sr0.4MnO3 (0.02≤x≤0.1) perovskite manganites: the role of Gd3+ ionic substitution[J]. Materials Chemistry and Physics, 2025, 329: 130109. |
| [12] | LIU Z M, NIU H B, et al. Tunable magnetic phase transition and room temperature magnetocaloric effect in La0.67Ba0.33MnO3 nanoparticles[J]. Journal of Applied Physics, 2025, 137(6): 063903. |
| [13] | SALAZAR-MUÑOZ V E, LOBO-GUERRERO A, PALOMARES-SÁNCHEZ S A. Review of magnetocaloric properties in lanthanum manganites[J]. Journal of Magnetism and Magnetic Materials, 2022, 562: 169787. |
| [14] | ZENER C. Interaction between the d-shells in the transition metals. II. ferromagnetic compounds of manganese with perovskite structure[J]. Physical Review, 1951, 82(3): 403-405. |
| [15] | MAO H K, CHEN B, CHEN J H, et al. Recent advances in high-pressure science and technology[J]. Matter and Radiation at Extremes, 2016, 1(1): 59-75. |
| [16] | ZHANG Y J, ZHU Y J, LI Q, et al. Record-high superconducting transition temperature in a Ti1- x Mn x alloy with the rich magnetic element Mn[J]. Journal of the American Chemical Society, 2024, 146(30): 21110-21119. |
| [17] | 郝敬林, 邓丽芬, 王凯悦, 等. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
| HAO J L, DENG L F, WANG K Y, et al. Synthesis of doped diamond by high-pressure and high-temperature: a review[J]. Journal of Synthetic Crystals, 2024, 53(2): 194-209 (in Chinese). | |
| [18] | 李帅锜, 贺端威, 张佳威. 大腔体静高压技术的发展及应用[J]. 物理, 2022, 51(4): 228-238. |
| LI S Q, HE D W, ZHANG J W. Development and application of large volume, high static pressure technology[J]. Physics, 2022, 51(4): 228-238 (in Chinese). | |
| [19] | LI W H, HAHN E N, BRANICIO P S, et al. Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression[J]. International Journal of Plasticity, 2021, 138: 102923. |
| [20] | 李胜华, 李金良, 王旭之. 超高压材料合成设备的研究进展[J]. 人工晶体学报, 2020, 49(7): 1320-1325. |
| LI S H, LI J L, WANG X Z. Research progress on ultra-high pressure material synthesis equipment[J]. Journal of Synthetic Crystals, 2020, 49(7): 1320-1325 (in Chinese). | |
| [21] | DAGOTTO E, HOTTA T, MOREO A. Colossal magnetoresistant materials: the key role of phase separation[J]. Physics Reports, 2001, 344(1/2/3): 1-153. |
| [22] | CHRONEOS A, VOVK R V, GOULATIS I L, et al. Oxygen transport in perovskite and related oxides: a brief review[J]. Journal of Alloys and Compounds, 2010, 494(1/2): 190-195. |
| [23] | ALVAREZ F M, VIGNA M B, QUINTERO M, et al. Magnetocaloric effect of nanostructured La0.6Sr0.4CoO3[J]. Journal of Alloys and Compounds, 2024, 970: 172507. |
| [24] | SATHISHKUMAR P, MADESWARAN S. The effect of Jahn-Teller distortion on the magnetic and magnetocaloric effect in La-doped gadolinium barium manganite[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(10): 692. |
| [25] | GAMZATOV A G, BATDALOV A B, ABDULKADIROVA N Z, et al. Giant magnetothermal anomalies and direct measurements of the magnetocaloric effect in Pr0.7Sr0.3- x Ba x MnO3 manganites[J]. Journal of Alloys and Compounds, 2023, 964: 171330. |
| [26] | ROCCO D L, ALMEIDA SILVA R, CARVALHO A M G, et al. Magnetocaloric effect of La0.8Sr0.2MnO3 compound under pressure[J]. Journal of Applied Physics, 2005, 97(10): 10M317. |
| [27] | THIYAGARAJAN R, ESAKKI MUTHU S, BARIK S K, et al. Effect of hydrostatic pressure on magnetic entropy change and critical behavior of the perovskite manganite La0.4Bi0.3Sr0.3MnO3[J]. Journal of Applied Physics, 2013, 113(2): 023904. |
| [28] | ZHAO J, GAO L, ZHAO J J, et al. Magnetocaloric effect and phase transition critical behavior of La0.75Sr0.25Mn0.9Co0.1O3 compound synthesized under the high pressure[J]. Tungsten, 2024, 6(3): 621-632. |
| [29] | JIN X, ZHAO J, MA H J, et al. Influence of high-pressure heat treatment on magnetic property and phase transition critical behavior in La0.75Sr0.25Mn1- x Co x O3 (x=0, 0.1, 0.2)[J]. Results in Physics, 2024, 57: 107392. |
| [30] | JIN X, ZHAO J, GAO L, et al. Influence of high-pressure heat treatment on magnetocaloric effects and phase transition critical behavior in La0.75Sr0.25Mn0.9Co0.1O3[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(23): 1593. |
| [31] | SUN Y, KAMARAD J, ARNOLD Z, et al. Tuning of magnetocaloric effect in a La0.69Ca0.31MnO3 single crystal by pressure[J]. Applied Physics Letters, 2006, 88(10): 102505. |
| [32] | SZYMCZAK R, KOLANO R, KOLANO-BURIAN A, et al. Cooling by adiabatic pressure application in La0.7Ca0.3MnO3 magnetocaloric effect material[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(9/10/11/12): 1589-1591. |
| [33] | THIYAGARAJAN R, ESAKKI MUTHU S, MANIKANDAN K, et al. Effect of hydrostatic pressure on magnetic and magnetocaloric properties in La0.35Pr0.35Ca0.3MnO3[J]. Journal of Magnetism and Magnetic Materials, 2016, 398: 116-120. |
| [34] | THIYAGARAJAN R, ESAKKI MUTHU S, MAHENDIRAN R, et al. Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3(B=Co and Cr)[J]. Journal of Applied Physics, 2014, 115(4): 043905. |
| [35] | MYDEEN K, SARKAR P, MANDAL P, et al. Hydrostatic pressure effect on archetypal Sm0.52Sr0.48MnO3 single crystal[J]. Applied Physics Letters, 2008, 92(18): 182510. |
| [36] | ARUMUGAM S, SARKAR P, MANDAL P, et al. Effect of hydrostatic pressure on magnetic phase transition and magnetocaloric properties of (Sm0.8Nd0.2)0.52Sr0.48MnO3[J]. Journal of Applied Physics, 2010, 107(11): 113904. |
| [37] | ARUMUGAM S, SARKAR P, MANDAL P, et al. Effect of hydrostatic pressure on ferromagnetic phase transition in (Sm0.7Nd0.3)0.52Sr0.48MnO3 single crystal[J]. Journal of Physics: Conference Series, 2010, 215: 012007. |
| [38] | DAS R, MIDYA A, KUMARI M, et al. Enhanced magnetocaloric effect driven by hydrostatic pressure in Na-doped LaMnO3[J]. The Journal of Physical Chemistry C, 2019, 123(6): 3750-3757. |
| [39] | WEI Z Y, LIEDIENOV N A, LI Q J, et al. Influence of post-annealing, defect chemistry and high pressure on the magnetocaloric effect of non-stoichiometric La0.8- x K0.2Mn1+ x O3 compounds[J]. Ceramics International, 2021, 47(17): 24553-24563. |
| [40] | SU D Y, LIEDIENOV N A, KALITA V M, et al. Structural size effect-, aging time-, and pressure-dependent functional properties of Mn-containing perovskite nanoparticles[J]. Acta Materialia, 2024, 280: 120332. |
| [1] | 代义之, 马琳, 张文杰, 雷文瑄, 肖雯, 张俊祺, 王文誉, 张晋兴, 刘渝城. 金属卤化物钙钛矿单晶结构维度调控及其直接型X射线探测性能研究进展[J]. 人工晶体学报, 2025, 54(8): 1305-1329. |
| [2] | 张爱平, 魏亚洲, 周昌垚, 袁瑞涵, 吴聪聪, 郑霄家. BA2MA3Pb4I13相纯度调控及其对X射线探测的影响[J]. 人工晶体学报, 2025, 54(7): 1256-1264. |
| [3] | 李宁, 张欣雷, 肖宝, 张滨滨. 辐射探测器用CsPbBr3晶体的缺陷研究进展[J]. 人工晶体学报, 2025, 54(7): 1146-1159. |
| [4] | 偰航, 靳志文. 薄膜制备方法及其结晶行为对卤化物钙钛矿X射线探测器成像性能的影响研究综述[J]. 人工晶体学报, 2025, 54(7): 1100-1120. |
| [5] | 于牧冰, 高岗, 赵勇彪, 朱嘉琦. 蓝光准二维钙钛矿结晶动力学调控及其电致发光器件研究[J]. 人工晶体学报, 2025, 54(7): 1132-1145. |
| [6] | 郑璐瑛, 王芳, 许谢铭, 王帅华, 吴少凡. 基于RP型层状钙钛矿CHA2PbBr4单晶的高效X射线探测[J]. 人工晶体学报, 2025, 54(7): 1272-1281. |
| [7] | 李家和, 郑丽丽, 张辉, 李翔, 陈俊锋. 坩埚下降法生长氟化物晶体的热场对界面形状和生长速率的影响[J]. 人工晶体学报, 2025, 54(5): 772-783. |
| [8] | 加雪峰, 阮妙, 叶林峰, 倪玉凤, 郭永刚, 高鹏. 咪唑基离子液修饰钙钛矿太阳能电池及其性能研究[J]. 人工晶体学报, 2025, 54(5): 864-872. |
| [9] | 梁敏, 熊瑞彬, 陈淑丽, 王祖建, 苏榕冰, 苏彬, 刘颖, 何超. 极化调控PIN-PMN-PT铁电单晶压电性能的均匀性[J]. 人工晶体学报, 2024, 53(6): 953-958. |
| [10] | 肖宏宇, 李勇, 田昌海, 张蔚曦, 王强, 肖政国, 王应, 金慧, 鲍志刚, 周振翔. Ib型金刚石单晶生长及合成腔体温度场分布研究[J]. 人工晶体学报, 2024, 53(6): 959-966. |
| [11] | 康杰, 丁紫阳, 王晓燕, 李连荣, 孙为云, 焦璨, 宋月鹏. 腐蚀法制备SiC量子点粒径调控及尺寸对其光学性能的影响[J]. 人工晶体学报, 2024, 53(4): 684-691. |
| [12] | 陈力, 周旭东, 袁明瑞, 肖恢芙, 田永辉. 基于亚波长光栅辅助定向耦合器的集成铌酸锂偏振分束器[J]. 人工晶体学报, 2024, 53(3): 465-471. |
| [13] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
| [14] | 李传皓, 李忠辉, 彭大青, 张东国, 杨乾坤, 罗伟科. 大尺寸GaN微波材料范德瓦耳斯外延机理及应力调控研究[J]. 人工晶体学报, 2024, 53(2): 252-257. |
| [15] | 甘世雁, 梅炳初, 李威威. Er,Na:CaF2透明陶瓷的制备与光谱性能研究[J]. 人工晶体学报, 2024, 53(12): 2059-2065. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS