
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1132-1145.DOI: 10.16553/j.cnki.issn1000-985x.2025.0075
于牧冰1,2(
), 高岗1,2(
), 赵勇彪3(
), 朱嘉琦1,2
收稿日期:2025-04-13
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
高岗,博士,副教授。E-mail:gaogang@hit.edu.cn;赵勇彪,博士,教授。E-mail:yzhao@ynu.edu.cn
作者简介:于牧冰(1998—),男,黑龙江省人,博士研究生。E-mail:mubingyu1998@163.com基金资助:
YU Mubing1,2(
), GAO Gang1,2(
), ZHAO Yongbiao3(
), ZHU Jiaqi1,2
Received:2025-04-13
Online:2025-07-20
Published:2025-07-30
摘要: 蓝光钙钛矿电致发光器件凭借优异的色纯度和低成本制备优势,在全彩显示与白光照明领域具有重要应用价值。准二维钙钛矿因卓越的光学性能与结构调控特性,展现出广阔的应用前景,然而,其晶体动力学调控对薄膜质量及发光性能的优化具有决定性影响。本文综述了蓝光准二维钙钛矿的光学特性与光物理性质,重点探讨了通过成分调控、添加剂工程、后处理工艺及界面修饰等手段对其结晶过程的调控策略。研究表明,精确调控准二维钙钛矿的晶体动力学不仅有助于提升薄膜的均匀性和荧光量子产率,还能显著改善器件的外部量子效率和运行稳定性。本文对当前研究的局限性问题进行了分析,并展望了未来高效率、高亮度、长期运行稳定的蓝光钙钛矿电致发光器件的发展方向,为后续研究提供了参考。
中图分类号:
于牧冰, 高岗, 赵勇彪, 朱嘉琦. 蓝光准二维钙钛矿结晶动力学调控及其电致发光器件研究[J]. 人工晶体学报, 2025, 54(7): 1132-1145.
YU Mubing, GAO Gang, ZHAO Yongbiao, ZHU Jiaqi. Research on Crystallization Kinetics Regulation of Blue Quasi-2D Perovskites and Their Application in Electroluminescent Devices[J]. Journal of Synthetic Crystals, 2025, 54(7): 1132-1145.
图1 (a)蓝光准二维钙钛矿晶体结构示意图;(b)准二维钙钛矿量子阱中能量传输路径示意图[23];(c)常见的载流子传输层和发光层能带结构示意图[30]
Fig.1 (a) Schematic diagram of blue quasi-2D perovskite crystal structure, (b) schematic diagram of energy transfer pathways in quasi-2D perovskite quantum well[23], (c) energy band structure schematic diagram of common carrier transport layer and light-emitting layer[30]
图2 (a)形成蓝光准二维钙钛矿中间n值相示意图[32];(b)原始和(c) GA10钙钛矿薄膜的TA光谱[33];(d) PEA2(Rb x Cs1-x )2Pb3Br10钙钛矿的紫外-可见吸收和稳态PL光谱[34];(e) CsPbBr3、Cs0.75EA0.25PbBr3和Cs0.5EA0.5PbBr3的电子态密度(DOS)[35]
Fig.2 (a) Schematic diagram representing the strategy adopted to form intermediate n phases for blue emission[32], TA spectra of pristine (b) and GA10 perovskite film (c)[33], (d) UV-Vis absorption and steady-state PL spectra of PEA2(Rb x Cs1-x )2Pb3Br10[34],(e) electronic density of states (DOS) of CsPbBr3, Cs0.75EA0.25PbBr3, and Cs0.5EA0.5PbBr3[35]
图3 (a) PEA2Cs1.5Pb2.5Br8.5中添加0%~60% IPABr的PL光谱[36];(b) PEA2Cs1.5Pb2.5Br8.5中添加0%和40% IPABr的TA光谱[36];(c) CsPbClBr2中比例不同的DPPABr和PEABr薄膜的GIWAXS的积分强度[37];(d) P-PDABr2调控相组分示意图[38];不同配体处理的准二维钙钛矿薄膜的紫外-可见吸收光谱(e)和PL光谱(f)[39]
Fig.3 (a) PL spectra of perovskite PEA2Cs1.5Pb2.5Br8.5 with 0%~60% IPABr additive[36], (b) TA spectra of PEA2Cs1.5Pb2.5Br8.5 with 0% and 40% IPABr[36], (c) the integrated intensity-q relations of GIWAXS patterns for the CsPbClBr2 nanocrystal films with different ratios between DPPABr and PEABr[37], (d) schematic diagram of low-dimensional components engineering of P-PDABr2[38], UV-Vis spectra (e) and PL spectra (f) of different ligand treated quasi-2D perovskite film[39]
图4 对照(a)和8%-PPNCl(b)蓝光准二维钙钛矿薄膜的GIWAXS图像[40];(c)对照和DFBP改性钙钛矿的缺陷钝化和相调控示意图[41];(d)原始结构、含有氯离子空位和通过C=O基团修复的钙钛矿的PDOS曲线[42];(e)原始结构、含有Pb-Cl反位缺陷和—OH修复的钙钛矿的PDOS曲线[42];(f)GABA和PEA与PbBr2配位结合到表面的示意图和 DFT 计算的失稳能[43]
Fig.4 GIWAXS images of control (a) and 8%-PPNCl (b) blue quasi-2D perovskite film[40], (c) schematic diagram of defect passivation and low-dimensional phase regulation of DFBP in the pristine and target perovskites[41], (d) PDOS curves of the pristine perovskite, perovskite containing a chloride vacancy and renovated by C=O group[42], (e) PDOS curves of the pristine perovskite, perovskite containing a lead-chloride defect and renovated by hydroxy group[42], (f) schematic and DFT calculated destabilization energy of PbBr2 coordinated with GABA and PEA binding to the surface[43]
图5 (a)对照和含20% NaBr的准二维钙钛矿薄膜的紫外-可见吸收光谱和PL光谱[44];对照(b)和含20% NaBr(c)的准二维钙钛矿薄膜的TA光谱[44];(d)在准二维钙钛矿中添加Na+重新构建相分布的示意图[44];旋涂在原始和碱金属离子处理的PEDOT∶PSS薄膜上的准二维钙钛矿薄膜的紫外-可见吸收光谱(e)和TRPL曲线(f)[45];(g)掺入卤化锂的蓝光、绿光和红光钙钛矿薄膜的PLQY[46]
Fig.5 (a) UV-Vis absorption and PL spectra of quasi-2D perovskite films without and with 20% NaBr[44], TA spectra UV-Vis of quasi-2D perovskite films without (b) and with 20% NaBr (c)[44], (d) schematic illustrated the rearrangement of phase distribution by adding Na+ in quasi-2D perovskites[44], UV-Vis absorption spectra (e) and TRPL curves (f) of quasi-2D perovskite films spin-coated on pristine and alkali-treated PEDOT∶PSS films[45], (g) PLQY of LiX incorporated blue, green, and red perovskite films[46]
图6 对照(a)和DMSO蒸汽处理(b)的准二维钙钛矿薄膜的原位GIWAXS图像[47];(c)DMSO蒸汽处理后准二维钙钛矿薄膜相分布重构及能量转移示意图[47];(d)对照和热梯度处理的钙钛矿薄膜垂直方向相分布示意图[48];对照(e)和热梯度处理(f)的钙钛矿薄膜的紫外-可见吸收光谱和归一化PL光谱[48]
Fig.6 In-situ GIWAXS images for the control (a) and DMSO steam-treated (b) quasi-2D phases of perovskite film[47], (c) schematic illustration of the suppressed energy transfer losses for the rearranged phase distribution[47], (d) schematic diagrams of the vertical domain distribution in the control and target film[48], the absorption and normalized PL spectra of the control (e) and thermal gradient treated (f) quasi-2D perovskite film[48]
图7 (a)CsCl掺杂重构准二维钙钛矿相分布示意图[50];未掺入(b)和掺入(c)CsCl的准二维钙钛矿薄膜特定波长下的TA动力学曲线[50];对照(d)和TEOS改性(e)的PVK层上生长的准二维钙钛矿薄膜在不同退火时间下的GIWAXS衍射图像[51]
Fig.7 (a) Schematic diagram of rearrangement of the phase distribution of quasi-2D perovskites after CsCl diffusion[50], TA kinetics probed at selected wavelengths in quasi-2D perovskites without (b) and with (c) CsCl incorporation[50], GIWAXS diffraction patterns of perovskite films on pristine (d) and TEOS-modified (e) PVK layers at different annealing times[51]
图8 对照(a)和PS改性(b)的PEDOT∶PSS层上生长的准二维钙钛矿薄膜的GIWAXS图像[52];对照和PS改性钙钛矿薄膜的稳态PL光谱(c)和PLQY(d)[52];(e)PBA+/Cs+与[PbBr6]4-结合形成钙钛矿结构的示意图[53];(f)DFT计算PBA+/Cs+与[PbBr6]4-之间的吸收能结果[53];对照(g)和GASCN改性(h)的钙钛矿膜的GIWAXS图像[53];原始(i)和自组装分子改性(j)的钙钛矿膜的紫外-可见吸收光谱和TA光谱[54]
Fig.8 GIWAXS images of perovskite films grown on the control (a) and PS-modified (b) PEDOT∶PSS layers[52], (c) steady-state PL spectra and (d) PLQYs of control and PS-modified perovskite films[52], (e) schematic illustration of the formation of n-phase due to different absorption energy between the PBA+/Cs+ and [PbBr6]4-[53], (f) DFT calculation results of the absorption energy between the PBA+/Cs+ and [PbBr6]4-[53], GIWAXS images of pristine perovskite (g) and GASCN modified (h) perovskite film[53], UV-Vis absorption and TA spectra with different time scales of pristine (i) and modified (j) perovskite films[54]
| [1] | FAN X T, WANG S L, YANG X, et al. Brightened bicomponent perovskite nanocomposite based on Förster resonance energy transfer for micro-LED displays[J]. Advanced Materials, 2023, 35(30): e2300834. |
| [2] | WANG L, XU J S, LUO J J, et al. Thermally evaporated perovskite light-emitting diodes for wide-color-gamut displays in AR/VR devices[J]. Device, 2024, 2(10): 100549. |
| [3] | KIM M S, SADHUKHAN P, MYOUNG J M. High-performance blue perovskite films and micro-arrays for light-emitting diodes with ionic liquid interlayer[J]. Advanced Functional Materials, 2024, 34(1): 2309436. |
| [4] | DENG S B, SHI E Z, YUAN L, et al. Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites[J]. Nature Communications, 2020, 11(1): 664. |
| [5] | JIANG X M, XIA S Q, ZHANG J, et al. Exploring organic metal halides with reversible temperature-responsive dual-emissive photoluminescence[J]. ChemSusChem, 2019, 12(24): 5228-5232. |
| [6] | FENG A, JIANG X, ZHANG X, et al. Shape control of metal halide perovskite single crystals: from bulk to nanoscale [J]. Chemistry of Materials, 2020, 32(18): 7602-7617. |
| [7] | YANG F, ZENG Q S, DONG W, et al. Rational adjustment to interfacial interaction with carbonized polymer dots enabling efficient large-area perovskite light-emitting diodes[J]. Light, Science & Applications, 2023, 12(1): 119. |
| [8] | YU Y, TANG Y Y, WANG B F, et al. Red perovskite light-emitting diodes: recent advances and perspectives[J]. Laser & Photonics Reviews, 2023, 17(2): 2200608. |
| [9] | YU Y, WANG B F, SHEN Y, et al. Regulating perovskite crystallization through interfacial engineering using a zwitterionic additive potassium sulfamate for efficient pure-blue light-emitting diodes[J]. Angewandte Chemie (Internation Edition), 2024, 63(7): e202319730. |
| [10] | KARLSSON M, YI Z Y, REICHERT S, et al. Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes[J]. Nature Communications, 2021, 12(1): 361. |
| [11] | CHENG L, JIANG T, CAO Y, et al. Multiple-quantum-well perovskites for high-performance light-emitting diodes[J]. Advanced Materials, 2020, 32(15): e1904163. |
| [12] | ZHANG L, HU S, GUO M, et al. Manipulation of charge dynamics for efficient and bright blue perovskite light-emitting diodes with chiral ligands [J]. Advanced Materials, 2023, 35(38): 2302059. |
| [13] | XIA Y, LOU Y H, ZHOU Y H, et al. Reduced confinement effect by isocyanate passivation for efficient sky-blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 2022, 32(47): 2208538. |
| [14] | LI Y H, XIA Y, ZHANG Z P, et al. In situ hydrolysis of phosphate enabling sky-blue perovskite light-emitting diode with EQE approaching 16.32%[J]. ACS Nano, 2024, 18(8): 6513-6522. |
| [15] | LIU S C, GUO Z Y, WU X X, et al. Zwitterions narrow distribution of perovskite quantum wells for blue light-emitting diodes with efficiency exceeding 15[J]. Advanced Materials, 2023, 35(3): e2208078. |
| [16] | YUAN S C, FANG T, HUANG J, et al. Balancing charge injection via a tailor-made electron-transporting material for high performance blue perovskite QLEDs[J]. ACS Energy Letters, 2023, 8(1): 818-826. |
| [17] | CHU Z M, ZHANG W, JIANG J, et al. Blue perovskite light-emitting diodes using multifunctional small molecule dopants[J]. Advanced Materials, 2025, 37(17): e2409718. |
| [18] | KO P K, GE J, DING P, et al. The deepest blue: major advances and challenges in deep blue emitting quasi-2D and nanocrystalline perovskite LEDs[J]. Advanced Materials, 2024, 2407764. |
| [19] | REN Z W, WANG K, SUN X W, et al. Strategies toward efficient blue perovskite light-emitting diodes[J]. Advanced Functional Materials, 2021, 31(30): 2100516. |
| [20] | REN Z W, YU J H, QIN Z T, et al. High-performance blue perovskite light-emitting diodes enabled by efficient energy transfer between coupled quasi-2D perovskite layers[J]. Advanced Materials, 2021, 33(1): e2005570. |
| [21] | CHENG Y Z, WAN H Y, SARGENT E H, et al. Reduced-dimensional perovskites: quantum well thickness distribution and optoelectronic properties[J]. Advanced Materials, 2024: e2410633. |
| [22] | LI X, HOFFMAN J M. The Kanatzidis 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency [J]. Chemical Reviews, 2021, 121(4): 2230-2291. |
| [23] | CHEN P, MENG Y, AHMADI M, et al. Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes[J]. Nano Energy, 2018, 50: 615-622. |
| [24] | QUAN L N, ZHAO Y B, GARCÍA DE ARQUER F P, et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission[J]. Nano Letters, 2017, 17(6): 3701-3709. |
| [25] | YU M B, MEI X Y, QIN T X, et al. Modulating phase distribution and passivating surface defects of quasi-2D perovskites via potassium tetrafluoroborate for light-emitting diodes[J]. Chemical Engineering Journal, 2022, 450: 138021. |
| [26] | XIA Y, LI Y H, WANG Z K, et al. Domain distribution management of quasi-2D perovskites toward high-performance blue light-emitting diodes[J]. Advanced Functional Materials, 2023, 33(35): 2303423. |
| [27] | YANG J N, WANG J J, YIN Y C, et al. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes[J]. Chemical Society Reviews, 2023, 52(16): 5516-5540. |
| [28] | GAO Y, CAI Q T, HE Y F, et al. Highly efficient blue light-emitting diodes based on mixed-halide perovskites with reduced chlorine defects[J]. Science Advances, 2024, 10(29): 5645. |
| [29] | NENON D P, PRESSLER K, KANG J, et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer lewis bases[J]. Journal of the American Chemical Society, 2018, 140(50): 17760-17772. |
| [30] | CHU Z M, YOU J B. Blue light-emitting diodes based on pure bromide perovskites[J]. Advanced Materials, 2024: 2409867. |
| [31] | WEI Z H, XING J. The rise of perovskite light-emitting diodes[J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 3035-3042. |
| [32] | YANTARA N, JAMALUDIN N F, FEBRIANSYAH B, et al. Designing the perovskite structural landscape for efficient blue emission[J]. ACS Energy Letters, 2020, 5(5): 1593-1600. |
| [33] | ZHOU Y H, WANG C Y, YUAN S, et al. Stabilized low-dimensional species for deep-blue perovskite light-emitting diodes with EQE approaching 3.4[J]. Journal of the American Chemical Society, 2022, 144(40): 18470-18478. |
| [34] | JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes[J]. Nature Communications, 2019, 10(1): 1868. |
| [35] | CHU Z M, ZHAO Y, MA F, et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes[J]. Nature Communications, 2020, 11(1): 4165. |
| [36] | XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes[J]. Nature Communications, 2018, 9(1): 3541. |
| [37] | WANG C H, HAN D B, WANG J H, et al. Dimension control of in situ fabricated CsPbClBr2 nanocrystal films toward efficient blue light-emitting diodes[J]. Nature Communications, 2020, 11(1): 6428. |
| [38] | YUAN S, WANG Z K, XIAO L X, et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes[J]. Advanced Materials, 2019, 31(44): e1904319. |
| [39] | JIN Y, WANG Z K, YUAN S, et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes[J]. Advanced Functional Materials, 2020, 30(6): 1908339. |
| [40] | YUAN S, DAI L J, SUN Y Q, et al. Efficient blue electroluminescence from reduced-dimensional perovskites[J]. Nature Photonics, 2024, 18(5): 425-431. |
| [41] | WANG B, ZHOU Y H, YUAN S, et al. Low-dimensional phase regulation to restrain non-radiative recombination for sky-blue perovskite LEDs with EQE exceeding 15[J]. Angewandte Chemie (International Edition), 2023, 62(21): e202219255. |
| [42] | YU M B, QIN T X, GAO G, et al. Multiple defects renovation and phase reconstruction of reduced-dimensional perovskites via in situ chlorination for efficient deep-blue (454 nm) light-emitting diodes[J]. Light, Science & Applications, 2025, 14(1): 102. |
| [43] | WANG Y K, MA D X, YUAN F L, et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters[J]. Nature Communications, 2020, 11(1): 3674. |
| [44] | PANG P Y, JIN G R, LIANG C, et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes[J]. ACS Nano, 2020, 14(9): 11420-11430. |
| [45] | WANG Y Y, XU Y T, YUN J Y, et al. Suppressing interfacial nonradiative recombination by alkali hydroxides for efficient blue perovskite light-emitting diodes[J]. Chemical Engineering Journal, 2024, 486: 149964. |
| [46] | WU T, LI J N, ZOU Y T, et al. High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation[J]. Angewandte Chemie (International Edition), 2020, 59(10): 4099-4105. |
| [47] | PENG X F, HE B C, ZHENG H L, et al. Suppressed energy transfer loss of dion-jacobson perovskite enabled by DMSO vapor treatment for efficient sky-blue light-emitting diodes[J]. ACS Energy Letters, 2023, 8(1): 339-346. |
| [48] | XIA Y, SONG B, ZHANG Z P, et al. Vertically concentrated quantum wells enabling highly efficient deep-blue perovskite light-emitting diodes[J]. Angewandte Chemie (International Edition), 2024, 63(22): e202403739. |
| [49] | TONG Y F, BI X Y, XU S, et al. In situ halide exchange of cesium lead halide perovskites for blue light-emitting diodes[J]. Advanced Materials, 2023, 35(3): e2207111. |
| [50] | CHU Z M, ZHANG W, JIANG J, et al. Blue light-emitting diodes based on quasi-two-dimensional perovskite with efficient charge injection and optimized phase distribution via an alkali metal salt[J]. Nature Electronics, 2023, 6(5): 360-369. |
| [51] | WANG L, SU Z H, SHEN Y, et al. Regulated perovskite crystallization for efficient blue light-emitting diodes via interfacial molecular network[J]. Advanced Functional Materials, 2024, 34(36): 2401297. |
| [52] | YU Y, WANG B F, SHEN Y, et al. Regulating perovskite crystallization through interfacial engineering using a zwitterionic additive potassium sulfamate for efficient pure-blue light-emitting diodes[J]. Angewandte Chemie (International Edition), 2024, 63(7): e202319730. |
| [53] | ZHANG F J, GAO Y B, WANG D D, et al. Phase distribution management for high-efficiency and bright blue perovskite light-emitting diodes[J]. Nano Energy, 2024, 120: 109144. |
| [54] | ZHANG F J, YANG Y G, GAO Y B, et al. High-performance blue perovskite light-emitting diodes enabled by synergistic effect of additives[J]. Nano Letters, 2024, 24(4): 1268-1276. |
| [1] | 王智超, 叶林峰, 阮妙, 杨超, 加雪峰, 倪玉凤, 郭永刚, 高鹏. 钙钛矿太阳电池中的脒基小分子界面修饰策略[J]. 人工晶体学报, 2025, 54(5): 873-881. |
| [2] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [3] | 雷莎莎, 龚巧瑞, 赵呈春, 孙晓慧, 杭寅. 宽禁带半导体ZnGa2O4研究进展[J]. 人工晶体学报, 2024, 53(8): 1289-1301. |
| [4] | 孙元龙, 胡子钰, 郑国宗. 大尺寸CH3NH3PbBr3晶体生长和光电性能表征[J]. 人工晶体学报, 2024, 53(8): 1313-1318. |
| [5] | 杨涛, 陈彩明, 黄瑜佳, 吴少平, 徐华蕊, 汪坤喆, 朱归胜. ITO/AgNWs/ITO薄膜的制备及其性能研究[J]. 人工晶体学报, 2024, 53(7): 1150-1159. |
| [6] | 从文博, 彭韶龙, 王航, 李丽华, 黄金亮. Co3O4@BiVO4复合薄膜的制备及其光电性能[J]. 人工晶体学报, 2024, 53(10): 1729-1737. |
| [7] | 侯俨育, 董海亮, 贾志刚, 贾伟, 梁建, 许并社. 组分阶梯InGaN势垒对绿光激光二极管光电性能的影响[J]. 人工晶体学报, 2023, 52(8): 1386-1393. |
| [8] | 陈绍华, 穆文祥, 张晋, 董旭阳, 李阳, 贾志泰, 陶绪堂. Ni掺杂β-Ga2O3单晶的光、电特性研究[J]. 人工晶体学报, 2023, 52(8): 1373-1377. |
| [9] | 段超, 李坤, 高岗, 杨磊, 徐梁格, 浩钢, 朱嘉琦. 原子层沉积及其在透明导电薄膜领域的研究与应用[J]. 人工晶体学报, 2023, 52(6): 1052-1066. |
| [10] | 耿方娟, 杨磊, 朱嘉琦. 退火方式及温度对层层碘化法CuI薄膜结构、形貌和光电性能的影响[J]. 人工晶体学报, 2023, 52(5): 842-848. |
| [11] | 武成, 朱昭捷, 李坚富, 涂朝阳, 吕佩文, 王燕. 反应磁控溅射制备h-BN薄膜及其日盲紫外探测器[J]. 人工晶体学报, 2023, 52(5): 798-804. |
| [12] | 赵聪, 郭华飞, 邱建华, 丁建宁, 袁宁一. 基于氯化铯背接触处理优化硒化锑薄膜太阳电池性能[J]. 人工晶体学报, 2023, 52(4): 636-644. |
| [13] | 兰博洋, 祁婉欣, 李东, 韩凤兰. 具有n-n型异质结的复合材料Bi2S3/MIL-125(Ti)光电性能研究[J]. 人工晶体学报, 2023, 52(1): 139-148. |
| [14] | 卢辉, 李彤, 温谦, 沙思淼, 马思敏, 薛晓洋, 王康, 盛之林, 马金福. 水杨酸的添加对全无机锡铅混合钙钛矿太阳能电池的影响[J]. 人工晶体学报, 2022, 51(8): 1387-1395. |
| [15] | 尹佳奇, 余春燕, 翟光美, 李天保, 张竹霞. 铟镓共掺杂对n-ZnO纳米棒/p-GaN异质结生长行为和光电性能的影响[J]. 人工晶体学报, 2022, 51(6): 1012-1019. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS