
人工晶体学报 ›› 2026, Vol. 55 ›› Issue (1): 1-12.DOI: 10.16553/j.cnki.issn1000-985x.2025.0128
• 综合评述 • 下一篇
彭张良1,2(
), 孙贵华1(
), 张庆礼1, 王小飞1, 罗建乔1
收稿日期:2025-06-16
出版日期:2026-01-20
发布日期:2026-02-05
通信作者:
孙贵华
作者简介:彭张良(1998—),男,安徽省人,硕士研究生。E-mail:18955698952@163.com
基金资助:
PENG Zhangliang1,2(
), SUN Guihua1(
), ZHANG Qingli1, WANG Xiaofei1, LUO Jianqiao1
Received:2025-06-16
Online:2026-01-20
Published:2026-02-05
Contact:
SUN Guihua
摘要: 三价钕离子(Nd3+)掺杂材料可以提供0.9~1.4 μm等谱域,基于Nd3+掺杂发展了大量的激光材料。0.9 μm波段附近通过倍频技术可将激光转换为蓝光,用于显示技术和生物成像;1.06 μm波段附近激光输出属于四能级系统,增益高,易于实现高功率输出,用于工业激光切割及激光手术等;1.4 μm波段附近处于人眼安全带且具有大气传输特性,广泛应用于高精度激光雷达、生物医学应用和精细加工领域。这些红外激光源的研究因各种潜在的应用而在过去几十年中引起了广泛关注。本文详细介绍了掺Nd3+激光晶体在氧化物及氟化物基质中的脉冲激光性能,同时分析传统可饱和吸收体和新兴二维可饱和吸收体的非线性光学特性及应用领域,最后总结了被动调Q掺Nd3+固体激光器在基质和可饱和吸收体材料及谐振腔的研究现状与发展趋势。相信本文将对被动调Q掺Nd3+固体激光器的研究提供更深的了解。
中图分类号:
彭张良, 孙贵华, 张庆礼, 王小飞, 罗建乔. 被动调Q掺Nd3+固体激光器的研究进展[J]. 人工晶体学报, 2026, 55(1): 1-12.
PENG Zhangliang, SUN Guihua, ZHANG Qingli, WANG Xiaofei, LUO Jianqiao. Research Progress on Passive Q-Switched Nd3+-Doped Solid-State Lasers[J]. Journal of Synthetic Crystals, 2026, 55(1): 1-12.
| 材料 | 工作波段/μm | 调制深度/% | 恢复时间/μs | 饱和吸收强度/(W·cm-2) | Reference | |
|---|---|---|---|---|---|---|
| 传统材料 | Cr4+∶YAG | 1.06 | — | 3.4 | 6.3×104 | [ |
| V3+∶YAG | 1.34 | — | 0.022 | <7×106 | [ | |
| Co2+∶MgAl2O4 | 1.54 | — | 0.35 | — | [ | |
| 二维新兴材料 | 单层石墨烯 | 1.05 | 1 | 1.45×10-9 | — | [ |
| TMD(MoS2) | 1.06 | 15.5 | — | 520 | [ | |
| MXene(Ti2C) | 1.06 | 4.5 | — | 3.2×1010 | [ | |
| 多层黑磷 | 1.34 | 15.5 | — | — | [ | |
| 缺陷型h-BN | 1.06 | 1.1 | — | 1.03×109 | [ | |
| 石墨烯-MoS2异质结 | 1.06 | 15.01 | — | — | [ | |
| 其他材料 | CH3NH3PbI3薄膜 | 1.30 | 18.2 | — | 1.4×105 | [ |
| 石墨烯量子点 | 1.06 | 6.9 | — | — | [ | |
表1 不同类型饱和吸收体性能参数对比
Table 1 Comparison of performance parameters of different types of saturated absorbers
| 材料 | 工作波段/μm | 调制深度/% | 恢复时间/μs | 饱和吸收强度/(W·cm-2) | Reference | |
|---|---|---|---|---|---|---|
| 传统材料 | Cr4+∶YAG | 1.06 | — | 3.4 | 6.3×104 | [ |
| V3+∶YAG | 1.34 | — | 0.022 | <7×106 | [ | |
| Co2+∶MgAl2O4 | 1.54 | — | 0.35 | — | [ | |
| 二维新兴材料 | 单层石墨烯 | 1.05 | 1 | 1.45×10-9 | — | [ |
| TMD(MoS2) | 1.06 | 15.5 | — | 520 | [ | |
| MXene(Ti2C) | 1.06 | 4.5 | — | 3.2×1010 | [ | |
| 多层黑磷 | 1.34 | 15.5 | — | — | [ | |
| 缺陷型h-BN | 1.06 | 1.1 | — | 1.03×109 | [ | |
| 石墨烯-MoS2异质结 | 1.06 | 15.01 | — | — | [ | |
| 其他材料 | CH3NH3PbI3薄膜 | 1.30 | 18.2 | — | 1.4×105 | [ |
| 石墨烯量子点 | 1.06 | 6.9 | — | — | [ | |
| Year | Saturable absorber | Wavelength/nm | Repetition rate/kHz | Output power/mW | Pulse width/ns | Energy/μJ | Peak power/kW | Reference |
|---|---|---|---|---|---|---|---|---|
| 2003 | Cr4+∶YAG | 1 064 | 35.5 | 91 | 7 | — | 0.37 | [ |
| 2008 | Cr4+∶YAG | 1 064 | 16.3 | 592 | 6 | 38.5 | 6.5 | [ |
| 2013 | 单壁碳纳米管 | 1 319 | 42.7 | — | 1.15 | 18.27 | 0.000 78 | [ |
| 2014 | 石墨烯 | 1 444 | 85 | 411 | 560 | 4.83 | 0.008 6 | [ |
| 2016 | MoS2 | 946 | 609 | — | 280 | 0.35 | 0.001 23 | [ |
| 2017 | 金纳米棒 | 1 064.3 | 300 | 101 | 223 | 337.7 | — | [ |
| 1 112 | 120 | 236 | 504 | 1.18 | — | |||
| 2018 | WS2 | 1 116/1 123 | 100.9 | 410 | 640 | 4.06 | 6.35 | [ |
| 2020 | 碲烯 | 1 064 1 319/1 338 | 535.8 257.1 | 140 112 | 97.5 177.7 | 0.26 0.44 | 0.002 68 0.002 45 | [ [ |
| 2021 | Ti2CTx | 1 064 | 260 | 946 | 163 | 3.638 | 0.002 232 | [ |
| 2022 | 石墨烯 | 1 064 | 102.7 | 639 | 2.06 | 6.9 | 0.003 | [ |
| 2025 | Cr4+∶YAG | 945 | 0.12 | 0.864 | 78.6 | 91 | [ |
表2 Nd∶YAG被动调Q激光器研究进展
Table 2 Progress of Nd∶YAG passive Q-switched laser
| Year | Saturable absorber | Wavelength/nm | Repetition rate/kHz | Output power/mW | Pulse width/ns | Energy/μJ | Peak power/kW | Reference |
|---|---|---|---|---|---|---|---|---|
| 2003 | Cr4+∶YAG | 1 064 | 35.5 | 91 | 7 | — | 0.37 | [ |
| 2008 | Cr4+∶YAG | 1 064 | 16.3 | 592 | 6 | 38.5 | 6.5 | [ |
| 2013 | 单壁碳纳米管 | 1 319 | 42.7 | — | 1.15 | 18.27 | 0.000 78 | [ |
| 2014 | 石墨烯 | 1 444 | 85 | 411 | 560 | 4.83 | 0.008 6 | [ |
| 2016 | MoS2 | 946 | 609 | — | 280 | 0.35 | 0.001 23 | [ |
| 2017 | 金纳米棒 | 1 064.3 | 300 | 101 | 223 | 337.7 | — | [ |
| 1 112 | 120 | 236 | 504 | 1.18 | — | |||
| 2018 | WS2 | 1 116/1 123 | 100.9 | 410 | 640 | 4.06 | 6.35 | [ |
| 2020 | 碲烯 | 1 064 1 319/1 338 | 535.8 257.1 | 140 112 | 97.5 177.7 | 0.26 0.44 | 0.002 68 0.002 45 | [ [ |
| 2021 | Ti2CTx | 1 064 | 260 | 946 | 163 | 3.638 | 0.002 232 | [ |
| 2022 | 石墨烯 | 1 064 | 102.7 | 639 | 2.06 | 6.9 | 0.003 | [ |
| 2025 | Cr4+∶YAG | 945 | 0.12 | 0.864 | 78.6 | 91 | [ |
| [1] | SHIMONY Y, BURSHTEIN Z, KALISKY Y. Cr4∶YAG as passive Q-switch and Brewster plate in a pulsed Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics, 1995, 31(10): 1738-1741. |
| [2] | 陈 红, 程铸生. 用于Nd∶YAP激光器的新被动调Q染料[J]. 中国激光, 1993, 20(4): 314. |
| CHEN H, CHENG Z S. A new passive Q-switched dye for Nd∶YAP laser[J]. Chinese Journal of Lasers, 1993, 20(4): 314 (in Chinese). | |
| [3] | 柳 强, 巩马理, 闫 平, 等. 激光二极管抽运的GaAs被动Q开关Nd∶YVO4激光器[J]. 光学学报, 2003, 23(3): 326-329. |
| LIU Q, GONG M L, YAN P, et al. Passive-Q-switching of laser diode-pumped Nd∶YVO4 laser with GaAs[J]. Acta Optica Sinica, 2003, 23(3): 326-329 (in Chinese). | |
| [4] | 郭铠旗, 戴腾飞, 温福兆宇, 等. 基于CH3NH3PbI3/AAO可饱和吸收体的被动调Q激光器[J]. 量子光学学报, 2023, 29(3): 103-110. |
| GUO K Q, DAI T F, WEN F, et al. Passive Q-switched laser based on perovskite-anodic alumina saturable absorber[J]. Journal of Quantum Optics, 2023, 29(3): 103-110 (in Chinese). | |
| [5] | 陈 言, 张沛雄, 权 聪, 等. 基于石墨烯可饱和吸收体的Er∶YAG被动调Q激光器[J]. 人工晶体学报, 2024, 53(7): 1127-1135. |
| CHEN Y, ZHANG P X, QUAN C, et al. Passively Q-switched Er∶YAG laser based on graphene saturable absorber[J]. Journal of Synthetic Crystals, 2024, 53(7): 1127-1135 (in Chinese). | |
| [6] | LU D Z, PAN Z B, ZHANG R, et al. Passively Q-switched ytterbium-doped ScBO3 laser with black phosphorus saturable absorber[J]. Optical Engineering, 2016, 55(8): 081312. |
| [7] | 康 喆, 刘明奕, 刘承志, 等. 基于微纳光纤-单壁碳纳米管可饱和吸收体的被动调Q掺镱光纤激光器[J]. 发光学报, 2017, 38(5): 630. |
| KANG Z, LIU M Y, LIU C Z, et al. Passively Q-switched Yb3+-doped fiber laser based on microfiber-single wall carbon nanotube saturable absorber[J]. Chinese Journal of Luminescence, 2017, 38(5): 630 (in Chinese). | |
| [8] | WANG M, ZHANG F, WANG Z P, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095. |
| [9] | 付鑫鹏, 付喜宏, 姚 聪, 等. 基于超薄层MoS2可饱和吸收体的被动调Q固体Nd∶YAG激光器[J]. 发光学报, 2021, 42(5): 668-673. |
| FU X P, FU X H, YAO C, et al. Passive Q-switched solid-state Nd∶YAG laser based on ultrathin MoS2 saturable absorber[J]. Chinese Journal of Luminescence, 2021, 42(5): 668-673 (in Chinese). | |
| [10] | 邹国梁.金纳米可饱和吸收体被动调Q研究进展[J].电子技术与软件工程,2020,2:77-78. |
| ZOU G L. Research progress on passive Q-tuning of gold nanoparticle saturable absorbers[J]. Electronic Technology and Software Engineering, 2020, 2: 77-78 (in Chinese). | |
| [11] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
| [12] | BAO Q L, ZHANG H, WANG Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083. |
| [13] | COLEMAN J N. Liquid-phase exfoliation of nanotubes and graphene[J]. Advanced Functional Materials, 2009, 19(23): 3680-3695. |
| [14] | TANG J L, BAI Z X, ZHANG D, et al. Advances in all-solid-state passively Q-switched lasers based on Cr4+∶YAG saturable absorber[J]. Photonics, 2021, 8(4): 93. |
| [15] | 欧阳斌, 丁彦华, 万小珂, 等. Cr4+∶YAG的可饱和吸收特性与被动Q开关性能研究[J]. 光学学报, 1996, 16(12): 1665-1670. |
| OUYANG B, DING Y H, WAN X K, et al. Saturable absorption of Cr4+∶YAG and its performance as passive Q switches[J]. Acta Optica Sinica, 1996, 16(12): 1665-1670 (in Chinese). | |
| [16] | 薛庆华, 郑 权, 卜轶坤, 等. LD泵浦Nd∶YVO4/V∶YAG被动调Q 1.34 μm激光器[J]. 光子学报, 2005, 34(7): 971-974. |
| XUE Q H, ZHENG Q, BU Y K, et al. LD-pumped Nd∶YVO4/V∶YAG passively Q-switched 1.34 μm laser[J]. Acta Photonica Sinica, 2005, 34(7): 971-974 (in Chinese). | |
| [17] | YUMASHEV K V. Saturable absorber Co2+∶MgAl2O4 crystal for Q switching of 1.34-microm Nd3+∶YAlO3 and 1.54-microm Er3+∶glass lasers[J]. Applied Optics, 1999, 38(30): 6343-6346. |
| [18] | 林洪沂, 刘 虹, 张顺钦, 等. 基于Co∶MgAl2O4晶体的被动调Q 1 319 nm Nd∶YAG激光器[J]. 激光与光电子学进展, 2018, 55(12): 343-346. |
| LIN H Y, LIU H, ZHANG S Q, et al. Passively Q-switched 1 319 nm Nd∶YAG laser based on Co∶MgAl2O4 crytal[J]. Laser & Optoelectronics Progress, 2018, 55(12): 343-346 (in Chinese). | |
| [19] | LAU K Y, LIU X F, QIU J R. A comparison for saturable absorbers: carbon nanotube versus graphene[J]. Advanced Photonics Research, 2022, 3(10): 2200023. |
| [20] | MARTINEZ A, SUN Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845. |
| [21] | HAN S, LI X L, XU H X, et al. Graphene Q-switched 0.9 μm Nd∶La0.11Y0.89VO4 laser[J]. Chinese Optics Letters, 2014, 12(1): 011401-11403. |
| [22] | 梁 莉, 林正怀, 陈 狮, 等. 石墨烯实现Nd∶YVO4激光器1064 nm和1342 nm双波长被动调Q [J]. 中国激光, 2014, 41(4): 53-56. |
| LIANG L, LIN Z H, CHEN S, et al. Graphene passively Q-switching for dual-wavelength lasers at 1064 nm and 1342 nm in Nd∶YVO4 laser[J]. Chinese Journal of Lasers, 2014, 41(4): 53-56 (in Chinese). | |
| [23] | WEIGAND R, BALMASEDA M, PÉREZ J. Q-switched operation with carbon-based saturable absorbers in a Nd∶YLF laser[J]. Applied Sciences, 2015, 5(3): 566-574. |
| [24] | 秦 涛, 常 恬, 张 文, 等. 类石墨烯过渡金属二硫化物的制备及应用研究进展[J]. 中国材料进展, 2019, 38(10): 1023-1029. |
| QIN T, CHANG T, ZHANG W, et al. Progress in preparation and application of graphene-like transition metal sulfides[J]. Materials China, 2019, 38(10): 1023-1029 (in Chinese). | |
| [25] | 郑伟, 孙正明, 张培根,等.二维纳米材料MXene的研究进展[J].材料导报,2017,31(9):1-14. |
| ZHENG W, SUN Z M, ZHANG P G, et al. Progress in the research of two-dimensional nanomaterial MXene[J]. Materials Reports, 2017, 31(9):1-14 (in Chinese). | |
| [26] | ZHANG T, CHU H W, LI Y, et al. Third-order optical nonlinearity in Ti2C MXene for Q-switching operation at 1-2 μm[J]. Optical Materials, 2022, 124: 112054. |
| [27] | LU S B, MIAO L L, GUO Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194. |
| [28] | SUN X L, NIE H K, HE J L, et al. Passively Q-switched Nd∶GdVO4 1.3 μm laser with few-layered black phosphorus saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1600405. |
| [29] | CHENG C, LI Z Q, DONG N N, et al. Atomic defect induced saturable absorption of hexagonal boron nitride in near infrared band for ultrafast lasing applications[J]. Nanomaterials, 2021, 11(12): 3203. |
| [30] | DAI R, CHANG J H, LI Y Y, et al. Performance enhancement of passively Q-switched Nd∶YVO4 laser using graphene-molybdenum disulphide heterojunction as a saturable absorber[J]. Optics & Laser Technology, 2019, 117: 265-271. |
| [31] | WANG J, WANG Y G, WANG T J, et al. 1.34~μm Q-switched Nd∶YVO4 laser based on perovskite film saturable absorber[J]. IEEE Photonics Technology Letters, 2020, 32(1): 3-6. |
| [32] | DING R, CHANG J H, KONG C X, et al. Passively Q-switched Nd∶YVO4 laser based on graphene quantum dots[J]. Chinese Journal of Luminescence, 2020, 41(1): 63 (in Chinese). |
| [33] | 李春宏, 周信达, 韩 伟, 等. 纳秒激光辐照下石英基单层石墨烯的损伤特性[J]. 高压物理学报, 2016, 30(5): 392-398. |
| LI C H, ZHOU X D, HAN W, et al. Characteristics of nanosecond laser-irradiated damage in single-layer graphene on fused silica substrate[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 392-398 (in Chinese). | |
| [34] | 唐 静, 肖自恒, 王留洋, 等. 抗氧化Ti3C2Tx(MXene)的制备及环境稳定性研究[J]. 当代化工研究, 2025(7): 182-184. |
| TANG J, XIAO Z H, WANG L Y, et al. Study on the preparation and environment stability of antioxidant Ti3C2Tx (MXene)[J]. Modern Chemical Research, 2025(7): 182-184 (in Chinese). | |
| [35] | HUANG C H, LI S M, ZHAO C C, et al. Energy enhancement of Nd, Sc∶YAG crystal in passively Q-switched lasers[J]. Optics Letters, 2024, 49(23): 6749-6752. |
| [36] | MALEKI A, MOGHTADER DINDARLU M H, SAGHAFIFAR H, et al. 57 mJ with 10 ns passively Q-switched diode pumped Nd∶YAG laser using Cr4+∶YAG crystal[J]. Optical and Quantum Electronics, 2015, 48(1): 48. |
| [37] | ERFANI JAZI M, DEHGHAN BAGHI M, HAJIMAHMODZADEH M, et al. Pulsed Nd∶YAG passive Q-switched laser using Cr4+∶YAG crystal[J]. Optics & Laser Technology, 2012, 44(3): 522-527. |
| [38] | HAN S, DU Q H, GENG L, et al. Sub-nanosecond Nd∶YAG/Cr4+∶YAG crystal laser operating at 0.9 μm[J]. Optics & Laser Technology, 2025, 181: 111642. |
| [39] | DONG J, DENG P Z. Laser performance of monolithic Cr, Nd∶YAG self-Q-switched laser[J]. Optics Communications, 2003, 220(4/5/6): 425-431. |
| [40] | MIAO J G, WANG B S, PENG J Y, et al. Efficient diode-pumped passively Q-switched laser with Nd∶YAG/Cr∶YAG composite crystal[J]. Optics & Laser Technology, 2008, 40(1): 137-141. |
| [41] | YAN S L, ZHANG L, YU H J, et al. Passive Q-switching in a diode-side-pumped Nd∶YAG laser at 1.319 μm[J]. Optical Engineering, 2013, 52(10): 106107. |
| [42] | ZHANG H N, LI M, CHEN X H, et al. Graphene based passively Q-switched Nd∶YAG eye-safe laser[J]. Chinese Physics Letters, 2014, 31(7): 074201. |
| [43] | LIN H F, ZHU W Z, XIONG F B, et al. MoS2-based passively Q-switched diode-pumped Nd∶YAG laser at 946 nm[J]. Optics & Laser Technology, 2017, 91: 36-39. |
| [44] | SONG T, FENG C, CHEN X H, et al. Gold nanorods as a saturable absorber for passively Q-switching Nd∶YAG lasers at 1 064.3 and 1 112 nm[J]. Laser Physics Letters, 2017, 14(5): 055808. |
| [45] | LIN H F, ZHU W Z, MU R Z, et al. Q-switched dual-wavelength laser at 1116 and 1123 nm using WS2 saturable absorber[J]. IEEE Photonics Technology Letters, 2018, 30(3): 285-288. |
| [46] | TANG T H, ZHANG F, WANG M X,et al. Two-dimensional tellurene nanosheets as saturable absorber of passively Q-switched Nd∶YAG solid-state laser[J]. Chinese Optics Letters,2020,18(4):041403. |
| [47] | HUANG H F, WANG J W, XU N, et al. Ti2CTx MXene as a saturable absorber for passively Q-switched solid-state lasers[J]. Polymers, 2021, 13(2): 247. |
| [48] | XU L W, LI Y Y, CAI J, et al. Graphene passively Q-switched Nd∶YAG laser by 885 nm laser diode resonant pumping[J]. Applied Sciences, 2022, 12(16): 8365. |
| [49] | XIAO H, ZHAO T Z, GE W Q, et al. High stability LED-pumped Nd∶YVO4 laser with a Cr∶YAG for passive Q-switching[J]. Crystals, 2019, 9(4): 201. |
| [50] | CHEN J C, TU Y C, HO Y W, et al. Highly efficient diode-pumped passively Q-switched Nd∶YVO4/KGW Raman lasers at yellow and orange wavelengths[J]. Optics Express, 2023, 31(5): 8696-8703. |
| [51] | GUO H W, JIA C Y, YAO Y P, et al. Nonlinear optical saturable absorption properties of 2D VP nanosheets and application as SA in a passively Q-switched Nd∶YVO4 laser[J]. Materials, 2024, 17(11): 2585. |
| [52] | SU F F, ZHANG X Y, WANG Q P, et al. Analysis of a diode-pumped passively Q-switched Nd∶GdVO4 self-stimulating Raman laser[J]. Optical Materials, 2008, 30(12): 1895-1899. |
| [53] | GONG J Q, DONG L, CHU H W, et al. Passively Q-switched Nd∶GdVO4 lasers with core-shell ZIF-8@ZIF-67 saturable absorber at 1 and 1.34 µm[J]. Infrared Physics & Technology, 2023, 133: 104809. |
| [54] | JIANG L Y, SUI Q X, NIU D Q, et al. FAPbBr3/GaAs heterojunction saturable absorber for Nd∶GdVO4 passively Q-switched lasers[J]. Infrared Physics & Technology, 2024, 137: 105200. |
| [55] | HUANG K, GE W Q, ZHAO T Z, et al. High-power passively Q-switched Nd∶KGW laser pumped at 877 nm[J]. Applied Physics B, 2016, 122(6): 171. |
| [56] | YANG H W, ZHAO J X, HUANG H T, et al. The first-stokes pulse generation in Nd∶KGW intracavity driven by a diode-pumped passively Q-switched Nd∶YAG/Cr4+∶YAG laser[J]. Laser Physics, 2011, 21(2): 343-347. |
| [57] | ZOU Q S, SUN Q H, DAI Z H, et al. Efficient passively Q-switched Nd∶KGW/Cr4+∶YAG self-Raman laser[J]. Applied Physics B, 2024, 130(8): 150. |
| [58] | JIANG C, ZHANG M L, DAI S B, et al. High-performance diode-end-pumped Nd∶YLF laser operating at 1314 nm[J]. Optics Express, 2022, 30(10): 16396-16404. |
| [59] | MAIA PRADO F, JUNQUEIRA FRANCO T, URSUS WETTER N. Sub-nanosecond, 41 mJ pulse energy, passively Q-switched Nd∶YLF laser[J]. Optics & Laser Technology, 2023, 162: 109257. |
| [60] | KAISER W, SPITZER W G, KAISER R H, et al. Infrared properties of CaF2, SrF2, and BaF2 [J]. Physical Review, 1962, 127: 1950-1954. |
| [61] | MILAM D, WEBER M J, GLASS A J. Nonlinear refractive index of fluoride crystals[J].Applied Physics Letters, 1977, 31(12): 822-825. |
| [62] | SLACK G A. Thermal conductivity of CaF2, MnF2, CoF2, and ZnF2 crystals[J]. Physical Review, 1961, 122: 1451-1464. |
| [63] | BROWN D C. Heat, fluorescence, and stimulated-emission power densities and fractions in Nd∶YAG[J]. IEEE Journal of Quantum Electronics, 1998, 34: 560-572. |
| [64] | WANG Q, ZHANG X, LI C, et al. Optical spectra and excited state relaxation dynamics of Nd3+ in CaF2 single crystal[J]. Journal of Alloys and Compounds, 2011, 509: 8880-8884. |
| [65] | WANG Q, LI C, ZHANG X, et al. Nd3+∶CaF2 crystal with controlled photoluminescence spectroscopic properties by codoping Y3+ ions[J]. Optical Materials, 2013, 36: 455-457. |
| [66] | LI C, HAO Q, SU L, et al. Operation of continuous wave and Q-switching on diode-pumped Nd,Y∶CaF2 disordered crystal[J]. Optics & Laser Technology, 2015, 69: 140-143. |
| [67] | HAO Q, PANG S, LIU J, SU L. Tunable and passively Q-switched laser operation of Nd,Lu∶CaF2 disordered crystal[J]. Applied Optics, 2018, 57: 6491-6495. |
| [1] | 周丽娜, 刘建强, 牛晓伟. 首量科技:ø210 mm大尺寸Eu3+∶CaF2激光晶体生长[J]. 人工晶体学报, 2025, 54(2): 358-359. |
| [2] | 刘小虎, 朱昭捷, 涂朝阳, 王燕. 大尺寸Yb∶CALGO晶体的生长工艺研究[J]. 人工晶体学报, 2025, 54(10): 1858-1866. |
| [3] | 吴闻杰, 谭俊成, 张雅馨, 李真, 吕启涛, 张沛雄, 陈振强. Yb3+掺杂Ca(Y,Gd)AlO4混晶的生长、光谱和激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1780-1786. |
| [4] | 林文芳, 黄从晖, 房倩楠, 张宇航, 李善明, 陶斯亮, 赵呈春, 杭寅. Nd∶GdScO3晶体多波长激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1740-1747. |
| [5] | 龚兴红, 陈雨金, 黄建华, 林炎富, 黄艺东. Er3+/Yb3+双掺ScLuSi2O7混晶:高性能1.55 μm波段激光晶体的构建及性能研究[J]. 人工晶体学报, 2025, 54(10): 1796-1810. |
| [6] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [7] | 窦仁勤, 刘耀, 罗建乔, 王小飞, 刘文鹏, 张庆礼. Nd∶GdYAG激光晶体的光谱分析及热学性能研究[J]. 人工晶体学报, 2024, 53(9): 1504-1511. |
| [8] | 陈言, 张沛雄, 权聪, 孙敦陆, 李真, 陈振强. 基于石墨烯可饱和吸收体的Er∶YAG被动调Q激光器[J]. 人工晶体学报, 2024, 53(7): 1127-1135. |
| [9] | 于行, 赵琪, 齐小方, 马文成, 徐永宽, 胡章贵. 热交换法掺钛蓝宝石晶体生长过程中内辐射传热对晶体热应力的影响[J]. 人工晶体学报, 2024, 53(7): 1212-1221. |
| [10] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
| [11] | 赵文海, 陶世旭, 童思意, 唐健, 左传东, 曹永革, 麻朝阳. Lu2O3基激光透明陶瓷的研究进展[J]. 人工晶体学报, 2024, 53(12): 2043-2058. |
| [12] | 任永春, 李健达, 曹笑, 黄燚, 张帆, 张宁, 薛艳艳, 王庆国, 唐慧丽, 徐晓东, 董永军, 徐军. 高熔点稀土氧化物激光晶体的研究进展[J]. 人工晶体学报, 2024, 53(11): 1829-1839. |
| [13] | 张志恒, 侯文涛, 刘坚, 李东振, 薛艳艳, 王庆国, 吕莎莎, 徐晓东, 徐军. Er3+掺杂CaYAlO4晶体光谱和激光性能研究[J]. 人工晶体学报, 2024, 53(11): 1868-1876. |
| [14] | 丁雨憧, 张灵, 李海林, 张月, 唐杨, 强铭, 林辉. 水平定向结晶法生长浓度渐变Yb∶YAG激光晶体及光谱性能研究[J]. 人工晶体学报, 2024, 53(10): 1688-1698. |
| [15] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS