
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1858-1866.DOI: 10.16553/j.cnki.issn1000-985x.2025.0139
• 研究论文 • 上一篇
收稿日期:2025-07-04
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
王 燕,博士,研究员。E-mail:wy@fjirsm.ac.cn
作者简介:刘小虎(1999—),男,湖南省人,硕士研究生。E-mail:1063223903@qq.com基金资助:
LIU Xiaohu1,2,3(
), ZHU Zhaojie1, TU Chaoyang1, WANG Yan1(
)
Received:2025-07-04
Online:2025-10-20
Published:2025-11-11
摘要: 本文从固相反应温度、晶转速率、生长速率及降温速率几个方面,探索分析了采用提拉法生长大尺寸Yb∶CALGO晶体的工艺。通过对比不同温度下烧结反应后的多晶料XRD图谱发现,原料在1 350 ℃可以充分反应,根据所生长晶体的开裂截面形貌与晶体表面光滑度来优化晶转速率和生长速率,通过变温拉曼光谱分析降温速率导致开裂的成因,结合不同降温速率获得了不同方向的晶面应力分布图,发现对于沿着c轴生长的Yb∶CALGO晶体来说,降温速率过快更容易导致(001)面的热应力积累,这也是导致晶体在退火过程中开裂的主要诱因。采用多种手段优化晶体生长工艺后,实现了
中图分类号:
刘小虎, 朱昭捷, 涂朝阳, 王燕. 大尺寸Yb∶CALGO晶体的生长工艺研究[J]. 人工晶体学报, 2025, 54(10): 1858-1866.
LIU Xiaohu, ZHU Zhaojie, TU Chaoyang, WANG Yan. Growth Process of Large-Sized Yb∶CALGO Crystal[J]. Journal of Synthetic Crystals, 2025, 54(10): 1858-1866.
图3 不同生长速率条件下生长的Yb∶CALGO晶体照片。(a)以1 mm/h生长的直径为30 mm晶体;(b)以0.5 mm/h生长的直径为30 mm晶体;(c)以0.5 mm/h生长的直径为50 mm晶体;(d)以0.3 mm/h生长的直径为50 mm晶体
Fig.3 Photos of Yb∶CALGO crystals grown at different pulling rates. (a) 30 mm-diameter crystal grown at 1 mm/h; (b) 30 mm-diameter crystal grown at 0.5 mm/h; (c) 50 mm-diameter crystal grown at 0.5 mm/h; (d) 50 mm-diameter crystal grown at 0.3 mm/h
图5 (001)面样品的变温拉曼光谱。(a)升温过程中不同温度下的拉曼谱;(b)降温过程中不同温度下的拉曼谱
Fig.5 Temperature-dependent Raman spectra of the (001)-oriented sample. (a) Raman spectra at various temperatures during heating; (b) Raman spectra at different temperatures during cooling
图6 采用偏振光干涉法获得的应力分布图。(a)、(b)8%Yb∶CALGO晶体在80 h缓慢降温条件下获得的(100)和(001)晶片的应力分布图;(c)、(d)2.5%Yb∶CALGO晶体在4 h快速降温条件下获得的(100)和(001)晶片的应力分布图
Fig.6 Stress distribution maps obtained by polarized light interferometry. (a), (b) Stress distribution maps of (100) and (001) crystal plates of 8%Yb∶CALGO after slow cooling for 80 h; (c), (d) stress distribution maps of (100) and (001) crystal plates of 2.5%Yb∶CALGO after rapid cooling for 4 h
| Sample | Cooling time/h | Crystal plate | Average stress at different rotation angles/MPa | ||
|---|---|---|---|---|---|
| 0° | 45° | 90° | |||
8.0%Yb∶CALGO 8.0%Yb∶CALGO | 80 80 | (100) | 0.026 | 0.025 | 0.026 |
| (001) | 0.022 | 0.021 | 0.018 | ||
2.5%Yb∶CALGO 2.5%Yb∶CALGO | 4 4 | (100) | 0.025 | 0.027 | 0.032 |
| (001) | 0.039 | 0.046 | 0.044 | ||
表1 不同降温时间下,(100)和(001)晶片在旋转角度为0°、45°和90°时测得的平均应力值
Table 1 Average stress values of (100) and (001) crystal plates measured at rotation angles of 0°, 45°, and 90° for different cooling time
| Sample | Cooling time/h | Crystal plate | Average stress at different rotation angles/MPa | ||
|---|---|---|---|---|---|
| 0° | 45° | 90° | |||
8.0%Yb∶CALGO 8.0%Yb∶CALGO | 80 80 | (100) | 0.026 | 0.025 | 0.026 |
| (001) | 0.022 | 0.021 | 0.018 | ||
2.5%Yb∶CALGO 2.5%Yb∶CALGO | 4 4 | (100) | 0.025 | 0.027 | 0.032 |
| (001) | 0.039 | 0.046 | 0.044 | ||
| [1] | 张玲玲, 孟俊清, 黄 燕, 等. 高功率板条激光器的研究进展[J]. 激光与光电子学进展, 2005, 42(4): 33-36+32. |
| ZHANG L L, MENG J Q, HUANG Y, et al. Recent advances in high-power solid-state slab lasers[J]. Laser & Optronics Progress, 2005, 42(4): 33-36+32 (in Chinese). | |
| [2] |
BALDWIN G D, RIEDEL E P. Measurements of dynamic optical distortion in Nd-doped glass laser rods[J]. Journal of Applied Physics, 1967, 38(7): 2726-2738.
DOI URL |
| [3] |
FOSTER J D, OSTERINK L M. Thermal effects in a Nd∶YAG laser[J]. Journal of Applied Physics, 1970, 41(9): 3656-3663.
DOI URL |
| [4] | MARTIN W S, CHERNOCH J P. Multiple internal reflection face-pumped laser: 3633126[P]. 1972. |
| [5] | 王辉华, 林龙信, 叶 辛. 高功率板条激光技术现状与发展趋势[J]. 红外与激光工程, 2020, 49(7): 97-104. |
| WANG H H, LIN L X, YE X. Status and development trend of high power slab laser technology[J]. Infrared and Laser Engineering, 2020, 49(7): 97-104 (in Chinese). | |
| [6] | LEI J, JIANG W, DONG R H, et al. High-power and high-beam-quality with unstable resonator in a Yb∶YAG slab laser[J]. PLoS One, 2024, 19(12): e0310000. |
| [7] |
RUTHERFORD T S, TULLOCH W M, SINHA S, et al. Yb∶YAG and Nd∶YAG edge-pumped slab lasers[J]. Optics Letters, 2001, 26(13): 986-988.
DOI URL |
| [8] |
SHEN L Y, JIANG J M, SONG J J, et al. High temporal contrast 1 053 nm femtosecond pulses via spectral broadening and filtering in an air-filled multi-pass cell using a Yb∶CALGO amplifier[J]. Optics Letters, 2025, 50(7): 2398-2401.
DOI URL |
| [9] |
CHANG J Q, BIAN Q, BO Y, et al. 2.85-kW cryogenic Nd∶YAG slab laser operating at 946 nm[J]. Frontiers in Physics, 2023, 11: 1190569.
DOI URL |
| [10] |
PETIT J, GOLDNER P, VIANA B. Laser emission with low quantum defect in Yb∶CaGdAlO4 [J]. Optics Letters, 2005, 30(11): 1345-1347.
DOI URL |
| [11] | JAFFRÈS A, RICAUD S, SUGANUMA A, et al. Thermal conductivity versus Yb3+ concentration in Yb∶CALGO: a material for high power ultrafast laser[C]// 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. May 12-16, 2013, Munich, Germany. IEEE, 2013: 1. |
| [12] |
LOIKO P, DRUON F, GEORGES P, et al. Thermo-optic characterization of Yb∶CaGdAlO4 laser crystal[J]. Optical Materials Express, 2014, 4(11): 2241.
DOI URL |
| [13] |
LIU X H, LI X H, NIE H Y, et al. Growth, micromechanical aspects, spectroscopy, and laser performance of Yb∶CALGO crystal[J]. Optics Laser Technology, 2025, 189: 113140.
DOI URL |
| [14] |
WANG Y R, SU X C, XIE Y Y, et al. 17.8 fs broadband Kerr-lens mode-locked Yb∶CALGO oscillator[J]. Optics Letters, 2021, 46(8): 1892-1895.
DOI URL |
| [15] |
TU Z H, GUO J, GAN Z B, et al. High-power regenerative amplifier based on dual-crystal Yb∶CALGO configuration[J]. Optics Express, 2025, 33(9): 19641-19649.
DOI URL |
| [16] |
TRAWI F, DRS J, MÜLLER M, et al. Sub-30-fs Yb∶CALGO laser oscillator based on cross-polarized multi-mode diode pumping[J]. Optics Express, 2024, 32(21): 37897-37905.
DOI URL |
| [17] | GUO Z R, LIU J D, LIU T T, et al. High-power high-energy Yb-doped CaGdAlO4 regenerative amplifier with approximately 130 fs pulses-ERRATUM[J]. High Power Laser Science and Engineering, 2025, 13: e30. |
| [18] |
WANG W Z, WU H, LIU C, et al. Multigigawatt 50 fs Yb∶CALGO regenerative amplifier system with 11 W average power and mid-infrared generation[J]. Photonics Research, 2021, 9(8): 1439.
DOI URL |
| [19] | YANG J F, WANG Z H, SONG J J, et al. Diode-pumped 10 W femtosecond Yb∶CALGO laser with high beam quality[J]. High Power Laser Science and Engineering, 2021, 9: e33. |
| [20] | 黄 浩, 王炜哲, 蒲 涛, 等. 基于Yb∶CaAlGdO4晶体超短脉冲激光器的研究进展[J/OL]. 激光技术, 1-14[ 2025-07-04]. . |
| HUANG H, WANG W Z, PU T, et al. Research progress of ultrashort pulse laser based on Yb∶CaAlGdO4 crystal[J]. Laser Technology, 1-14[ 2025-07-04]. (in Chinese). | |
| [21] | 福建福晶科技股份有限公司,“唯快不破”的Yb∶CALGO晶体——一种极具前瞻性且可实现高功率窄脉宽的超快激光晶体[J]. 人工晶体学报, 2024, 53(8): 1473-1474. |
| Fujian Castech Inc. “Only fast can break” Yb∶CALGO crystal: a highly forward-looking and high power narrow pulse width ultrafast laser crystal[J]. Journal of Synthetic Crystals, 2024, 53(8): 1473-1474 (in Chinese). | |
| [22] | DI J Q, XU X D, XIA C T, et al. Crystal growth, polarized spectra, and laser performance of Yb∶CaGdAlO4 crystal[J]. Laser Physics, 2016, 26(4): 045803. |
| [23] | 胡强强. 几种无序结构晶体的生长和性能研究[D]. 济南: 山东大学, 2017. |
| HU Q Q. Study on growth and properties of several disordered crystals[D]. Jinan: Shandong University, 2017 (in Chinese). | |
| [24] |
RICAUD S, JAFFRES A, LOISEAU P, et al. Yb∶CaGdAlO4 thin-disk laser[J]. Optics Letters, 2011, 36(21): 4134-4136.
DOI URL |
| [25] |
LIU X H, LI J F, ZHU Z J, et al. Yb3+ dopant concentration dependence in Yb∶CaGdAlO4 bulk crystals[J]. CrystEngComm, 2025, 27(8): 1090-1102.
DOI URL |
| [26] | 李建立, 关效贤, 葛建军, 等. Nd∶NaY(WO4)2晶体生长与开裂研究[J]. 人工晶体学报, 2004, 33(6): 905-908. |
| LI J L, GUAN X X, GE J J, et al. Study on crystal growth and cracking of Nd∶NaY(WO4)2 [J]. Journal of Synthetic Crystals, 2004, 33(6): 905-908 (in Chinese). | |
| [27] | 刘晓阳, 刘 伟, 曾繁明, 等. Yb: YAG激光晶体生长与开裂分析[J]. 长春理工大学学报, 2005, 28(4): 113-115+112. |
| LIU X Y, LIU W, ZENG F M, et al. Growth and crack analysis of Yb∶YAG laser crystal[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 2005, 28(4): 113-115+112 (in Chinese). | |
| [28] | 刘小虎. 大尺寸Yb∶CALGO晶体的生长及其性能研究[D]. 福州: 福州大学, 2025. |
| LIU X H. Growth and performance research of large-sized Yb∶CALGO crystals[D]. Fuzhou: Fuzhou University, 2025 (in Chinese). | |
| [29] |
MISHRA K K, ACHARY S N, CHANDRA S, et al. Structural and thermal properties of BaTe2O6: combined variable-temperature synchrotron X-ray diffraction, Raman spectroscopy, and ab initio calculations[J]. Inorganic Chemistry, 2016, 55(17): 8994-9005.
DOI URL |
| [30] |
TRUSSOV I A, MALE L L, SANJUAN M L, et al. Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: a combined single crystal and variable temperature powder diffraction and Raman spectroscopy study[J]. Journal of Solid State Chemistry, 2019, 272: 157-165.
DOI URL |
| [31] |
NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Optics Express, 2016, 24(14): 15522-15527.
DOI PMID |
| [1] | 黎诗锋, 杨金凤, 黄云棋, 张博, 刘子琦, 孙军, 潘世烈. 提拉法生长Ca(BO2)2晶体的包裹体缺陷研究[J]. 人工晶体学报, 2025, 54(9): 1501-1508. |
| [2] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [3] | 邵梅方, 冯晋阳, 侯田江, 马晓. Ca2+/Mg2+/Zr4+不同化学计量比掺杂钆镓石榴石的性能[J]. 人工晶体学报, 2025, 54(4): 543-552. |
| [4] | 周丽娜, 刘建强, 牛晓伟. 首量科技:ø210 mm大尺寸Eu3+∶CaF2激光晶体生长[J]. 人工晶体学报, 2025, 54(2): 358-359. |
| [5] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [6] | 黄溢声, 刘乐辉, 张莉珍, 林州斌, 罗兴木, 陈伟. 三方对称高温相偏硼酸钡晶体的生长和性能研究[J]. 人工晶体学报, 2025, 54(10): 1844-1848. |
| [7] | 吴闻杰, 谭俊成, 张雅馨, 李真, 吕启涛, 张沛雄, 陈振强. Yb3+掺杂Ca(Y,Gd)AlO4混晶的生长、光谱和激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1780-1786. |
| [8] | 李谞泓, 朱昭捷, 黄一枝, 涂朝阳, 王燕. Yb3+∶Ca3Li0.275Nb1.775Ga2.95O12晶体的生长、光谱特性及飞秒激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1836-1843. |
| [9] | 林文芳, 黄从晖, 房倩楠, 张宇航, 李善明, 陶斯亮, 赵呈春, 杭寅. Nd∶GdScO3晶体多波长激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1740-1747. |
| [10] | 龚兴红, 陈雨金, 黄建华, 林炎富, 黄艺东. Er3+/Yb3+双掺ScLuSi2O7混晶:高性能1.55 μm波段激光晶体的构建及性能研究[J]. 人工晶体学报, 2025, 54(10): 1796-1810. |
| [11] | 窦仁勤, 刘耀, 罗建乔, 王小飞, 刘文鹏, 张庆礼. Nd∶GdYAG激光晶体的光谱分析及热学性能研究[J]. 人工晶体学报, 2024, 53(9): 1504-1511. |
| [12] | 于行, 赵琪, 齐小方, 马文成, 徐永宽, 胡章贵. 热交换法掺钛蓝宝石晶体生长过程中内辐射传热对晶体热应力的影响[J]. 人工晶体学报, 2024, 53(7): 1212-1221. |
| [13] | 王鸿雁, 王世武, 聂奕, 张行愚, 张芳, 许辉, 李瑞茂, 匡永飞. 大尺寸优质Cr3+∶BeAl2O4晶体生长与性能研究[J]. 人工晶体学报, 2024, 53(6): 947-952. |
| [14] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
| [15] | 孙德辉, 韩文斌, 李陈哲, 彭立果, 刘宏. 8英寸铌酸锂晶体生长研究[J]. 人工晶体学报, 2024, 53(3): 434-440. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS