
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1796-1810.DOI: 10.16553/j.cnki.issn1000-985x.2025.0167
收稿日期:2025-07-30
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
黄艺东,博士,研究员。E-mail:huyd@fjirsm.ac.cn
作者简介:龚兴红(1978—),男,云南省人,博士,副研究员。E-mail:newgxh@fjirsm.ac.cn基金资助:
GONG Xinghong(
), CHEN Yujin, HUANG Jianhua, LIN Yanfu, HUANG Yidong(
)
Received:2025-07-30
Online:2025-10-20
Published:2025-11-11
摘要: 人眼安全1.55 μm波段激光在光通信、激光雷达等领域具有重要应用。本研究采用理论模拟与实验相结合的方法,对1.55 μm激光晶体Er∶Yb∶ScLuSi2O7的构建及性能进行了深入研究。首先,对ScLuSi2O7晶体的光学、力学和热学性能进行理论模拟,分析其结构组成与性能的关系。计算得到ScLuSi2O7晶体折射率温度系数为4.11×10-6 K-1。同时,计算了ScLuSi2O7晶体的弹性刚度系数,并基于Voigt-Reuss-Hill近似,得到了该晶体的热力学参数,包括德拜温度(约为554 K)、比热容(0.61 J·g-1·K-1@300 K)和平均热导率(8.6 W m-1·K-1@300 K)。在实验部分,通过提拉法生长Er∶Yb∶ScLuSi2O7单晶,并研究其作为1.55 μm激光增益介质的光谱特性。采用975.4 nm激光二极管对该晶体进行端面泵浦,获得最高功率为1.06 W和斜率效率为13.53%的1.55 μm波段连续激光输出。
中图分类号:
龚兴红, 陈雨金, 黄建华, 林炎富, 黄艺东. Er3+/Yb3+双掺ScLuSi2O7混晶:高性能1.55 μm波段激光晶体的构建及性能研究[J]. 人工晶体学报, 2025, 54(10): 1796-1810.
GONG Xinghong, CHEN Yujin, HUANG Jianhua, LIN Yanfu, HUANG Yidong. Er3+/Yb3+ Codoped ScLuSi2O7 Mixed Crystals: Construction and Performance Investigation of High-Performance 1.55 μm Laser Crystals[J]. Journal of Synthetic Crystals, 2025, 54(10): 1796-1810.
图1 Er3+/Yb3+掺杂晶体1.55 μm波段激光运转机制简图
Fig.1 A schematic illustration of the working principle for an Er3+/Yb3+ doped fluoride crystal laser in the 1.55 μm wavelength region
图3 SLPS晶体的XRD图谱。(a)根据CASTEP软件优化得到的SLPS晶体结构模拟的XRD图谱;(b)所生长Er∶Yb∶SLPS晶体的XRD图谱
Fig.3 XRD patterns of SLPS crystal. (a) Simulated XRD pattern of the SLPS crystal structure optimized by the CASTEP software; (b) XRD pattern of the as-grown Er∶Yb∶SLPS crystal
| Crystal | Space group | a/Å | b/Å | c/Å | β/(o) | V/Å3 |
|---|---|---|---|---|---|---|
| Er∶Yb∶ScLuSi2O7Exp. | C2/m | 6.71 | 8.66 | 4.74 | 101.01 | 270.75 |
| ScLuSi2O7Calc. | C2/m | 6.70 | 8.75 | 4.73 | 101.84 | 271.66 |
| Difference/% | — | 0.15 | 1.02 | 0.21 | 0.82 | 0.34 |
表1 实验及CASTEP代码得到的SLPS晶体的晶胞常数
Table 1 Lattice constants of SLPS crystal obtained from experiment and the CASTEP code
| Crystal | Space group | a/Å | b/Å | c/Å | β/(o) | V/Å3 |
|---|---|---|---|---|---|---|
| Er∶Yb∶ScLuSi2O7Exp. | C2/m | 6.71 | 8.66 | 4.74 | 101.01 | 270.75 |
| ScLuSi2O7Calc. | C2/m | 6.70 | 8.75 | 4.73 | 101.84 | 271.66 |
| Difference/% | — | 0.15 | 1.02 | 0.21 | 0.82 | 0.34 |
图4 SLPS的原子态密度图。(a)SLPS的总态密度和原子投影态密度;(b)Sc及Lu在SLPS中的分态密度
Fig.4 Atomic density of states of SLPS. (a) Total density of states and atomic projected density of states of SLPS; (b) partial density of states of Sc and Lu in SLPS
| c11 | c22 | c33 | c44 | c55 | c66 | c12 | c13 | c15 | c23 | c25 | c35 | c46 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 284.70 | 213.92 | 216.74 | 83.10 | 96.16 | 69.71 | 116.70 | 128.31 | -10.10 | 112.42 | 35.48 | -5.08 | 22.07 |
表2 计算得到的SLPS的弹性刚度系数cij (GPa)
Table 2 Calculated elastic stiffness coefficientscij of SLPS
| c11 | c22 | c33 | c44 | c55 | c66 | c12 | c13 | c15 | c23 | c25 | c35 | c46 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 284.70 | 213.92 | 216.74 | 83.10 | 96.16 | 69.71 | 116.70 | 128.31 | -10.10 | 112.42 | 35.48 | -5.08 | 22.07 |
图5 SLPS晶体的弹性模量图。(a)SLPS晶体各向异性弹性模量图;(b)SLPS晶体弹性模量在XY、YZ和XZ截面的分布图
Fig.5 Elastic modulus of SLPS crystal. (a) Anisotropic elastic modulus map of the SLPS crystal; (b) distributions of elastic modulus of the SLPS crystal in the XY, YZ and XZ sections
| Parameter | SLPS | LPS[ |
|---|---|---|
| GH/GPa | 69 | 68 |
| BH/GPa | 156 | 160 |
| EH/GPa | 180.4 | 178.7 |
| vt/(m∙S-1) | 3 815 | 3 298 |
| vl/(m∙S-1) | 7 233 | 6 333 |
| vm/(m∙S-1) | 4 265 | 3 691 |
| 554 | 473 | |
| γe | 1.819 | 1.870 |
| kp | 0.442 | 0.425 |
表3 计算得到的GH、BH、vt、vl、θD、γe和kp
Table 3 Calculated GH, BH, vt, vl, θD, γe, and kp
| Parameter | SLPS | LPS[ |
|---|---|---|
| GH/GPa | 69 | 68 |
| BH/GPa | 156 | 160 |
| EH/GPa | 180.4 | 178.7 |
| vt/(m∙S-1) | 3 815 | 3 298 |
| vl/(m∙S-1) | 7 233 | 6 333 |
| vm/(m∙S-1) | 4 265 | 3 691 |
| 554 | 473 | |
| γe | 1.819 | 1.870 |
| kp | 0.442 | 0.425 |
图9 Er∶Yb∶SLPS晶体的光谱。(a)Er∶Yb∶SLPS晶体在350~850 nm波段的偏振吸收截面谱;(b)Er∶Yb∶SLPS晶体在875~1 050 nm波段的偏振吸收截面谱;(c)Er∶Yb∶SLPS晶体在1 450~1 650 nm波段的偏振吸收和发射截面谱
Fig.9 Spectra of Er∶Yb∶SLPS crystal. (a) Polarized absorption cross-section spectra of the Er∶Yb∶SLPS crystal in 350~850 nm; (b) polarized absorption cross-section spectra of the Er∶Yb∶SLPS crystal in 875~1 050 nm; (c) polarized absorption and emission cross-section spectra of the Er∶Yb∶SLPS crystal 1 450~1 650 nm
| Parameter | E//X | E//Y | E//Z | |
|---|---|---|---|---|
| Ωt (t=2,4,6) (10-20 cm2) | Ω2 | 1.81 | 3.06 | 4.34 |
| Ω4 | 0.97 | 0.97 | 2.41 | |
| Ω6 | 0.44 | 1.11 | 0.09 | |
| A/s-1 | 4I13/2→4I15/2 | 116.77 | 191.89 | 94.25 |
| 4I11/2→4I13/2 | 23.11 | 23.17 | 22.20 | |
| 4I11/2→4I15/2 | 80.27 | 185.74 | 55.80 | |
| τr/ms | 4I11/2 | 7.73 | ||
| 4I13/2 | 7.45 | |||
表4 Er3+在Er∶Yb∶SLPS晶体中的J-O强度参数、自发跃迁概率A及辐射寿命 τr
Table 4 Judd-Ofelt intensity parameters, spontaneous transition probabilities A, and radiative lifetimes τr of Er3+ in Er∶Yb∶SLPS crystal
| Parameter | E//X | E//Y | E//Z | |
|---|---|---|---|---|
| Ωt (t=2,4,6) (10-20 cm2) | Ω2 | 1.81 | 3.06 | 4.34 |
| Ω4 | 0.97 | 0.97 | 2.41 | |
| Ω6 | 0.44 | 1.11 | 0.09 | |
| A/s-1 | 4I13/2→4I15/2 | 116.77 | 191.89 | 94.25 |
| 4I11/2→4I13/2 | 23.11 | 23.17 | 22.20 | |
| 4I11/2→4I15/2 | 80.27 | 185.74 | 55.80 | |
| τr/ms | 4I11/2 | 7.73 | ||
| 4I13/2 | 7.45 | |||
图11 Er∶SLPS、Yb∶SLPS及Er∶Yb∶SLPS晶体中Er3+与Yb3+相关能级的荧光衰减曲线。(a)Er∶SLPS晶体中Er3+的4I13/2能级荧光衰减曲线;(b)Er∶SLPS晶体中Er3+的4I11/2能级荧光衰减曲线;(c)Yb∶SLPS晶体中Yb3+的2F5/2能级荧光衰减曲线;(d)Er∶Yb∶SLPS晶体中Yb3+的2F5/2能级荧光衰减曲线
Fig.11 Fluorescence decay curves of Er3+ and Yb3+ related energy levels in Er∶SLPS, Yb∶SLPS, and Er∶Yb∶SLPS crystals. (a) Fluorescence decay curve of the 4I13/2 of Er3+ in the Er∶SLPS crystal; (b) fluorescence decay curve of the 4I11/2 of Er3+ in the Er∶SLPS crystal; (c) fluorescence decay curve of the 2F5/2 of Yb3+ in the Yb∶SLPS crystal; (d) fluorescence decay curve of the 2F5/2 of Yb3+ in the Er∶Yb∶SLPS crystal
| Spectroscopic parameter | SLPS | LPS[ |
|---|---|---|
| Concentration of Er3+/(1020 cm-3) | 0.68 | 0.72 |
| Concentration of Yb3+/(1020 cm-3) | 6.9 | 7.2 |
| Peak absorption wavelength, λP/nm | 978 | 978(E//X, E//Z) 977(E//Y) |
| σabs at λp/(10-20 cm2) | 1.54(E//X) 0.85(E//Y) 1.69(E//Z) | 1.30(E//X) 0.89(E//Y) 1.47(E//Z) |
| Peak emission wavelength, λe/nm | 1 537 | 1 537 |
| σem at λe/(10-20 cm2) | 1.09(E//X) 1.03(E//Y) 0.76(E//Z) | 0.85(E//X) 1.20(E//Y) 0.81(E//Z) |
| τf of 4I13/2 multiplet/ms | 7.80 | 8.45 |
| τf of 4I11/2 multiplet/μs | 6.53 | 8.33 |
| Yb3+→Er3+ energy transfer efficiency/% | 83 | 86 |
表5 Er∶Yb∶SLPS和Er∶Yb∶LPS晶体中与1.55 μm波段激光相关的光谱参数比较
Table 5 Comparison of spectroscopic parameters related to the 1.55 μm laser in the Er∶Yb∶SLPS and Er∶Yb∶LPS crystals
| Spectroscopic parameter | SLPS | LPS[ |
|---|---|---|
| Concentration of Er3+/(1020 cm-3) | 0.68 | 0.72 |
| Concentration of Yb3+/(1020 cm-3) | 6.9 | 7.2 |
| Peak absorption wavelength, λP/nm | 978 | 978(E//X, E//Z) 977(E//Y) |
| σabs at λp/(10-20 cm2) | 1.54(E//X) 0.85(E//Y) 1.69(E//Z) | 1.30(E//X) 0.89(E//Y) 1.47(E//Z) |
| Peak emission wavelength, λe/nm | 1 537 | 1 537 |
| σem at λe/(10-20 cm2) | 1.09(E//X) 1.03(E//Y) 0.76(E//Z) | 0.85(E//X) 1.20(E//Y) 0.81(E//Z) |
| τf of 4I13/2 multiplet/ms | 7.80 | 8.45 |
| τf of 4I11/2 multiplet/μs | 6.53 | 8.33 |
| Yb3+→Er3+ energy transfer efficiency/% | 83 | 86 |
图12 975.4 nm LD泵浦的Er∶Yb∶SLPS晶体1.5~1.6 μm连续激光实验装置示意图
Fig.12 Schematic diagram of the 1.5~1.6 μm continuous-wave laser experimental setup for Er∶Yb∶SLPS crystal pumped by a 975.4 nm LD
图13 不同输出镜透过率T下,Er∶Yb∶SLPS连续激光输出功率随吸收泵浦功率的变化关系
Fig.13 Relationship between the continuous-wave laser output power of the Er∶Yb∶SLPS and the absorbed pump power under different output coupler transmissions T
图14 不同输出镜透过率下,吸收泵浦功率为9.28 W时Er∶Yb∶SLPS的激光光谱
Fig.14 Er∶Yb∶SLPS laser spectra at an absorbed pump power of 9.28 W for different output coupler transmissions
| [1] |
CHEN Y J, LIN Y F, GONG X H, et al. 2.0W diode-pumped Er∶Yb∶YAl3(BO3)4 laser at 1.5-1.6 μm[J]. Applied Physics Letters, 2006, 89(24): 241111.
DOI URL |
| [2] |
LI W Z, QIU Q, YU L, et al. Er/Yb co-doped 345-W all-fiber laser at 1535 nm using hybrid fiber[J]. Optics Letters, 2023, 48(11): 3027-3030.
DOI PMID |
| [3] |
VEGA-DURÁN J T, BARBOSA-GARCı́A O, DIÁZ-TORRES L A, et al. Effects of energy back transfer on the luminescence of Yb and Er ions in YAG[J]. Applied Physics Letters, 2000, 76(15): 2032-2034.
DOI URL |
| [4] | DENKER B I, GALAGAN B I, SVERCHKOV S E, et al. Erbium glass lasers[M]//DENKER B, SHKLOVSKY E. Handbook of solid-state lasers. Materials, systems and applications, Woodhead, 2013: 341-358. |
| [5] | GONG X H, CHEN Y J, HUANG J H, et al. Structure-composition-property relationships of Er3+∶Yb3+∶Sc2Si2O7 crystal as a 1.55 μm laser medium[J]. Infrared Physics & Technology, 2025, 150: 105980. |
| [6] |
HRAIECH S, FERID M, GUYOT Y, et al. Structural and optical studies of Yb3+, Er3+ and Er3+/Yb3+ co-doped phosphate glasses[J]. Journal of Rare Earths, 2013, 31(7): 685-693.
DOI URL |
| [7] |
CHEN Y H, HUANG J H, HUANG Y D, et al. Refractive index, thermal, spectroscopic and 1.55 μm laser properties of an Er∶Yb∶Lu2Si2O7 crystal[J]. Optical Materials, 2022, 128: 112448.
DOI URL |
| [8] | 王晗. Er3+激活1.55 μm硅酸盐激光晶体研究[D]. 北京: 中国科学院大学, 2016. |
| WANG H. Research on Er3+ activation of 1.55 μm silicate laser crystal[D]. Beijing: University of Chinese Academy of Sciences, 2016 (in Chinese) | |
| [9] |
LEWIS G N. The specifics heat of solids at constant volume, and the law of Dulong and Petit[J]. Journal of the American Chemical Society, 2002, 29: 1165-1168.
DOI URL |
| [10] |
OHASHI H, ALBA M D, BECERRO A I, et al. Structural study of the Lu2Si2O7-Sc2Si2O7 system[J]. Journal of Physics and Chemistry of Solids, 2007, 68(3): 464-469.
DOI URL |
| [11] |
CHUANG M H, TSAI M H, WANG W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308-6317.
DOI URL |
| [12] | GAUME R. A crystal chemistry approach for high-power ytterbium doped dolid-dtate lasers, diffusion-bonded crystals and new crystalline hosts[EB/OL]. Chimie ParisTech, 2002. |
| [13] |
REFSON K, TULIP P R, CLARK S J. Variational density-functional perturbation theory for dielectrics and lattice dynamics[J]. Physical Review B, 2006, 73(15): 155114.
DOI URL |
| [14] |
CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP[J]. Zeitschrift Für Kristallographie - Crystalline Materials, 2005, 220(5/6): 567-570.
DOI URL |
| [15] | 肖晓芳, 陈丽梅, 程敏熙. 测量玻璃热膨胀系数和折射率温度系数实验[J]. 实验室研究与探索, 2010, 29(4): 24-26. |
| XIAO X F, CHEN L M, CHENG M X. Experiment of measuring the thermal expansion coefficient and the coefficient of glass refraction index against temperature[J]. Research and Exploration in Laboratory, 2010, 29(4): 24-26 (in Chinese). | |
| [16] | JACKSON J D. Classical Electrodynamics[M]. 3rd Edition, Wiley-VCH, 1998. |
| [17] |
CARDINALI V, MARMOIS E, LE GARREC B, et al. Determination of the thermo-optic coefficient dn/dT of ytterbium doped ceramics (Sc2O3, Y2O3, Lu2O3, YAG), crystals (YAG, CaF2) and neodymium doped phosphate glass at cryogenic temperature[J]. Optical Materials, 2012, 34(6): 990-994.
DOI URL |
| [18] |
REGO G. Temperature dependence of the thermo-optic coefficient of SiO2 glass[J]. Sensors, 2023, 23(13): 6023.
DOI URL |
| [19] | BORN M, HUANG K. Dynamical theory of crystal lattices[M]. Oxford: Oxford University Press, 1968. |
| [20] | NYE J F. Physical properties of crystals[M]. Oxford: Oxford University Press Inc, 1985. |
| [21] |
KIM W. Strategies for engineering phonon transport in thermoelectrics[J]. Journal of Materials Chemistry C, 2015, 3(40): 10336-10348.
DOI URL |
| [22] |
VOIGT W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper[J]. Annalen der Physik, 1889, 274(12): 573-587.
DOI URL |
| [23] |
REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49-58.
DOI URL |
| [24] |
HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354.
DOI URL |
| [25] |
DEBYE P. Zur theorie der spezifischen Wärmen[J]. Annalen der Physik, 1912, 344(14): 789-839.
DOI URL |
| [26] |
ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917.
DOI URL |
| [27] |
SCHREIBER E, ANDERSON O L, SOGA N, et al. Elastic constants and their measurement[J]. Journal of Applied Mechanics, 1975, 42(3): 747-748.
DOI URL |
| [28] |
TIAN Z L, ZHENG L Y, LI Z J, et al. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates[J]. Journal of the European Ceramic Society, 2016, 36(11): 2813-2823.
DOI URL |
| [29] |
GONG X H, CHEN Y J, HUANG J H, et al. Growth, elastic, thermal, and crystal field analysis of the Yb3+∶YScSi2O7 laser crystal[J]. Crystal Growth & Design, 2024, 24(1): 293-300.
DOI URL |
| [30] |
SANDITOV B D, TSYDYPOV S B, SANDITOV D S. Relation between the Grüneisen constant and Poisson’s ratio of vitreous systems[J]. Acoustical Physics, 2007, 53(5): 594-597.
DOI URL |
| [31] |
SANDITOV D S, BELOMESTNYKH V N. Relation between the parameters of the elasticity theory and averaged bulk modulus of solids[J]. Technical Physics, 2011, 56(11): 1619-1623.
DOI URL |
| [32] |
SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335.
DOI URL |
| [33] |
JULIAN C L. Theory of heat conduction in rare-gas crystals[J]. Physical Review, 1965, 137(1A): A128-A137.
DOI URL |
| [34] |
YANG S L, WANG T Y, LI K B, et al. Investigation on the thermal-mechanical properties of YbRESiO5 (RE=Yb, Eu, Gd, Ho, Tm, Lu, Y, Sc): first-principles calculations and thermal performance experiments[J]. Coatings, 2024, 14(8): 1035.
DOI URL |
| [35] |
FERNÁNDEZ-CARRIÓN A J, ALLIX M, BECERRO A I. Thermal expansion of rare-earth pyrosilicates[J]. Journal of the American Ceramic Society, 2013, 96(7): 2298-2305.
DOI URL |
| [36] | 温崇哲. 热工及热应力基础[M]. 北京: 机械工业出版社, 1982. |
| WEN C Z. Fundamentals of thermal engineering and thermal stress[M]. Beijing: Machinery Industry Press, 1982 (in Chinese). | |
| [37] |
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Physical Review, 1962, 127(3): 750-761.
DOI URL |
| [38] |
ZHANG G, LIU H G, HE Z Y, et al. Determining the hyperfine structure and clock transitions for Kramers rare-earth ions in a crystal under a magnetic field: beyond spin Hamiltonian[J]. The Journal of Physical Chemistry C, 2022, 126(23): 9926-9936.
DOI URL |
| [39] |
HUANG J H, CHEN Y J, WANG H, et al. Efficient 1620 nm continuous-wave laser operation of Czochralski grown Er∶Yb∶Lu2Si2O7 crystal[J]. Optics Express, 2017, 25(20): 24001-24006.
DOI URL |
| [40] |
OFELT G S. Intensities of crystal spectra of rare‐earth ions[J]. The Journal of Chemical Physics, 1962, 37(3): 511-520.
DOI URL |
| [41] |
MCCUMBER D E. Einstein relations connecting broadband emission and absorption spectra[J]. Physical Review, 1964, 136(4A): A954-A957.
DOI URL |
| [42] |
FORNASIERO L, PETERMANN K, HEUMANN E, et al. Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 μm[J]. Optical Materials, 1998, 10(1): 9-17.
DOI URL |
| [43] |
MOUGEL F, DARDENNE K, AKA G, et al. Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal[J]. Josa B, 1999, 16(1): 164-172.
DOI URL |
| [1] | 黎诗锋, 杨金凤, 黄云棋, 张博, 刘子琦, 孙军, 潘世烈. 提拉法生长Ca(BO2)2晶体的包裹体缺陷研究[J]. 人工晶体学报, 2025, 54(9): 1501-1508. |
| [2] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [3] | 邵梅方, 冯晋阳, 侯田江, 马晓. Ca2+/Mg2+/Zr4+不同化学计量比掺杂钆镓石榴石的性能[J]. 人工晶体学报, 2025, 54(4): 543-552. |
| [4] | 周丽娜, 刘建强, 牛晓伟. 首量科技:ø210 mm大尺寸Eu3+∶CaF2激光晶体生长[J]. 人工晶体学报, 2025, 54(2): 358-359. |
| [5] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [6] | 刘小虎, 朱昭捷, 涂朝阳, 王燕. 大尺寸Yb∶CALGO晶体的生长工艺研究[J]. 人工晶体学报, 2025, 54(10): 1858-1866. |
| [7] | 黄溢声, 刘乐辉, 张莉珍, 林州斌, 罗兴木, 陈伟. 三方对称高温相偏硼酸钡晶体的生长和性能研究[J]. 人工晶体学报, 2025, 54(10): 1844-1848. |
| [8] | 吴闻杰, 谭俊成, 张雅馨, 李真, 吕启涛, 张沛雄, 陈振强. Yb3+掺杂Ca(Y,Gd)AlO4混晶的生长、光谱和激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1780-1786. |
| [9] | 李谞泓, 朱昭捷, 黄一枝, 涂朝阳, 王燕. Yb3+∶Ca3Li0.275Nb1.775Ga2.95O12晶体的生长、光谱特性及飞秒激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1836-1843. |
| [10] | 林文芳, 黄从晖, 房倩楠, 张宇航, 李善明, 陶斯亮, 赵呈春, 杭寅. Nd∶GdScO3晶体多波长激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1740-1747. |
| [11] | 窦仁勤, 刘耀, 罗建乔, 王小飞, 刘文鹏, 张庆礼. Nd∶GdYAG激光晶体的光谱分析及热学性能研究[J]. 人工晶体学报, 2024, 53(9): 1504-1511. |
| [12] | 于行, 赵琪, 齐小方, 马文成, 徐永宽, 胡章贵. 热交换法掺钛蓝宝石晶体生长过程中内辐射传热对晶体热应力的影响[J]. 人工晶体学报, 2024, 53(7): 1212-1221. |
| [13] | 王鸿雁, 王世武, 聂奕, 张行愚, 张芳, 许辉, 李瑞茂, 匡永飞. 大尺寸优质Cr3+∶BeAl2O4晶体生长与性能研究[J]. 人工晶体学报, 2024, 53(6): 947-952. |
| [14] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
| [15] | 孙德辉, 韩文斌, 李陈哲, 彭立果, 刘宏. 8英寸铌酸锂晶体生长研究[J]. 人工晶体学报, 2024, 53(3): 434-440. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS