欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1740-1747.DOI: 10.16553/j.cnki.issn1000-985x.2025.171

• 研究论文 • 上一篇    下一篇

Nd∶GdScO3晶体多波长激光性能研究

林文芳1,2(), 黄从晖1,2, 房倩楠1, 张宇航1,2, 李善明1,2, 陶斯亮1, 赵呈春1,2, 杭寅1,2()   

  1. 1.中国科学院上海光学精密机械研究所激光晶体研究中心,上海 200050
    2.中国科学院大学材料与光电研究中心,北京 100049
  • 收稿日期:2025-08-01 出版日期:2025-10-20 发布日期:2025-11-11
  • 通信作者: 杭寅,研究员。E-mail:yhang@siom.ac.cn
  • 作者简介:林文芳(1998—),女,海南省人,硕士研究生。E-mail:linwenfang@siom.ac.cn
    杭 寅,研究员,博士生导师,国务院政府特殊津贴专家(1993年),兼任中国晶体学会理事、中国稀土学会稀土晶体专业委员会副主任、中国硅酸盐学会晶体生长与材料分会理事、中国光学学会光学材料专业委员会委员和《人工晶体学报》顾问。1982年毕业于南京大学物理系,一直从事光电功能晶体材料的研究与开发工作。主持完成国家“863”“973”、国家自然科学基金、国防科工委、中国科学院和上海市科委等30多项课题。研制成功大尺寸钛宝石激光晶体、稀土离子掺杂氧化物和氟化物等新型激光晶体,以及新型掺钍核光钟晶体,发表SCI论文200多篇,获授权发明专利40多件,合作编著《稀土激光晶体》。
  • 基金资助:
    国家自然科学基金(52402015)

Multi-Wavelength Laser Operation in Nd∶GdScO3 Crystal

LIN Wenfang1,2(), HUANG Conghui1,2, FANG Qiannan1, ZHANG Yuhang1,2, LI Shanming1,2, TAO Siliang1, ZHAO Chengchun1,2, HANG Yin1,2()   

  1. 1. Research Center of Laser Crystal,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China
    2. Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2025-08-01 Online:2025-10-20 Published:2025-11-11

摘要: Nd∶GdScO3晶体是一种新型激光材料,其非均匀展宽光谱特性有利于实现新波长跃迁。实验采用提拉法生长了钕掺杂浓度为0.66%(原子数分数)的Nd∶GdScO3晶体,以未镀膜的b切晶体结合石英双折射片(QBP),在V型折叠腔结构中首次实现了1和1.3 μm波段的多波长激光输出。1 μm波段,在1 085.0、1071.4和1 092.6 nm处分别实现了5.3、3.5和2.3 W连续激光输出,斜率效率分别为61.0%、45.0%和30.0%;1.3 μm波段实现了双波长连续激光输出,输出功率1.25 W,斜率效率39.0%,波长分别为1 353.6和1 375.3 nm。在1 375.3 nm处还获得了调谐范围为4.0 nm的可调谐激光。研究结果表明,Nd∶GdScO3是一种具有非均匀展宽光谱的新型激光晶体,可以扩展钕离子的激光波长范围。

关键词: Nd∶GdScO3; 激光晶体; 非均匀展宽光谱; 1 μm激光; 1.3 μm激光; 多波长激光

Abstract: We report, for the first time to our knowledge, multi-wavelength laser emission from Nd∶GdScO3 crystal at ~1 μm and ~1.3 μm. Nd∶GdScO3 crystal is a novel laser crystal with inhomogeneous broadening spectra, which has great advantages in providing new laser transitions. The Nd∶GdScO3 crystal was grown by the Czochralski technique in this paper, with Nd3+ ions concentration of approximately 0.66% (atomic number fraction). The laser experiments were conducted using b-cut Nd∶GdScO3 crystals with dimensions of 5 mm in thickness, a cross-section of 3 mm×3 mm, and two highly polished surfaces without anti-reflective coatings. Multi-wavelength lasers were demonstrated by a single intracavity quartz birefringent plate (QBP). The QBP featured a thickness of 2 mm, an optical axis aligned along its surface, and no additional coatings applied. The experimental setup incorporated a simple V-fold resonator cavity designed to mitigate thermal effects, within the QBP at Brewster’s angle in the cavity. Simulations on tunable lasers mechanism were performed as well, to evaluate the performance of QBP plate in this system. At 1 μm region, an efficient continuous wave (CW) laser at 1085.0 nm attained an output power up to 5.3 W with slope efficiency of 61.0% in free running mode. Additionally, maximum output power of 3.5 and 2.3 W was achieved at 1 071.4 and 1 092.6 nm, with slope efficiencies of approximately 45.0% and 30.0%, respectively. At 1.3 μm region, an efficient dual-wavelength CW laser at 1 353.6 and 1 375.3 nm reached an output power up to 1.25 W with slope efficiency of 39.0% in free running mode. Furthermore, lasers with a tunable range of 4.0 nm at approximately 1 375.3 nm were also obtained. Our results indicate that Nd∶GdScO3 is capable of producing efficient multiple lasers at 1 071.4, 1085.4, 1092.6, 1353.6 and 1375.3 nm, expanding laser wavelength of Nd3+ ion.

Key words: Nd∶GdScO3; laser crystal; inhomogeneous broadening spectra; laser at 1 μm; laser at 1.3 μm; multi-wavelength laser

中图分类号: