
人工晶体学报 ›› 2026, Vol. 55 ›› Issue (1): 128-141.DOI: 10.16553/j.cnki.issn1000-985x.2025.0185
收稿日期:2025-08-25
出版日期:2026-01-20
发布日期:2026-02-05
通信作者:
林雪玲
作者简介:孔家栩(2002—),男,山东省人。E-mail:nxukjx@163.com
基金资助:
KONG Jiaxu(
), LIN Xueling(
), PAN Fengchun
Received:2025-08-25
Online:2026-01-20
Published:2026-02-05
Contact:
LIN Xueling
摘要: 本文运用基于密度泛函理论的CASTEP软件,研究了Mn掺杂单层MoS2体系的晶体结构、电子结构和光学性质,并系统研究了剪切应变对(Mo,Mn)S2体系电子结构和光学性质的调控规律。结果表明,Mn掺杂MoS2形成的替代缺陷中,MnMo缺陷的形成能最小。MnMo缺陷的引入降低了MoS2的禁带宽度,提高了掺杂体系对可见光区和红外光区光子的吸收能力。由于MnMo诱导的杂质能级的出现,掺杂体系光学吸收谱的吸收边落在红外光区;当施加剪切应变后,掺杂体系的禁带宽度发生变化,从而影响了掺杂体系的光学性质。不同剪切应变下掺杂体系的禁带宽度与晶场劈裂能的大小有关,-4%剪切应变下,Mn原子周围6个S原子形成的三棱柱晶场对Mn-3d电子的作用较小,此时掺杂体系的禁带宽度为0.42 eV,价带顶电子跃迁到导带底对所需要吸收光子的能量最小;-4%剪切应变体系对红外光区光子的吸收能力提升最好,吸收幅度最大;剪切应变的施加,对掺杂体系的复介电函数和反射系数均有影响,施加负剪切应变,有利于掺杂体系复介电函数在低能光区数值的提升,提高掺杂体系中价电子的跃迁概率和光生电子空穴对的分离概率,使掺杂体系的光催化性能得到很大的改善;此外,掺杂体系的光学性质也与MnMo缺陷的掺杂浓度有关,-4%剪切应变下,均匀掺杂4个MnMo的体系在可见光区和红外光区的光学吸收幅度最大,此时对应的MnMo掺杂摩尔分数为5.3%。本文的研究结果可为MoS2在光学领域的应用提供一种新途径。
中图分类号:
孔家栩, 林雪玲, 潘凤春. 剪切应变对Mn掺杂MoS2电子结构和光学性质影响的理论研究[J]. 人工晶体学报, 2026, 55(1): 128-141.
KONG Jiaxu, LIN Xueling, PAN Fengchun. Theoretical Study on Influence of Shear Strain on Electronic Structure and Optical Properties of Mn Doped MoS2[J]. Journal of Synthetic Crystals, 2026, 55(1): 128-141.
图1 晶体结构示意图。(a)MoS2超晶胞结构的俯视图(上)和侧视图(下);(b)第一布里渊区中的取点路径;(c)掺杂Mn原子周围6个近邻S原子形成的三棱柱结构
Fig.1 Structure diagram of crystal structure. (a) Vertical(top) and side(bottom) views of MoS2 supercell structure; (b) point taking path in first Brillouin zone; (c) triangular prism structure formed by six nearest neighboring S atoms around doped Mn atom
图4 零剪切应变下本征MoS2和MnMo体系的TDOS(a)和不同剪切应变下MnMo体系中Mn的PDOS(b)
Fig.4 TDOS of intrinsic MoS2 and MnMo system without strain (a), and PDOS of MnMo system under different shear strains (b)
| Shear strain/% | -4 | -2 | 0 | 2 | 4 |
|---|---|---|---|---|---|
| Volume/Å3 | 14.53 | 12.57 | 12.23 | 12.13 | 11.75 |
| Band gap/eV | 0.42 | 0.44 | 0.45 | 0.63 | 0.90 |
表1 不同剪切应变下三棱柱的体积和MnMo体系的禁带宽度
Table 1 Volume of triangular prisms and band gap of MnMo system under different shear strains
| Shear strain/% | -4 | -2 | 0 | 2 | 4 |
|---|---|---|---|---|---|
| Volume/Å3 | 14.53 | 12.57 | 12.23 | 12.13 | 11.75 |
| Band gap/eV | 0.42 | 0.44 | 0.45 | 0.63 | 0.90 |
| Shear strain/% | Bond | Bond population value | Bond length/nm | q* |
|---|---|---|---|---|
| -4 | Mn—S1(S4) | 0.04 | 0.238 | 3.99 |
| Mn—S2(S5) | 0.01 | 0.268 | 4.00 | |
| Mn—S3(S6) | 0.06 | 0.232 | 3.97 | |
| -2 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.236 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 0 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.230 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 2 | Mn—S1(S4) | 0.08 | 0.232 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.232 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.231 | 3.95 | |
| 4 | Mn—S1(S4) | 0.08 | 0.230 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.230 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.230 | 3.95 |
表2 不同剪切应变下掺杂Mn原子的键布局数值、键长和有效电荷q*
Table 2 Bond population value, bond length and effective charge q* of doped Mn atom under different shear strains
| Shear strain/% | Bond | Bond population value | Bond length/nm | q* |
|---|---|---|---|---|
| -4 | Mn—S1(S4) | 0.04 | 0.238 | 3.99 |
| Mn—S2(S5) | 0.01 | 0.268 | 4.00 | |
| Mn—S3(S6) | 0.06 | 0.232 | 3.97 | |
| -2 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.236 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 0 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.230 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 2 | Mn—S1(S4) | 0.08 | 0.232 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.232 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.231 | 3.95 | |
| 4 | Mn—S1(S4) | 0.08 | 0.230 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.230 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.230 | 3.95 |
| [1] | ULMER U, DINGLE T, DUCHESNE P N, et al. Fundamentals and applications of photocatalytic CO2 methanation[J]. Nature Communications, 2019, 10(1): 3169. |
| [2] | SCHLOEGL R. Fuel for thought[J]. Nature Materials, 2008, 7(10): 772-774. |
| [3] | WU H, TAN H L, TOE C Y, et al. Photocatalytic and photoelectrochemical systems: similarities and differences[J]. Advanced Materials,2020, 32(18): 1904717. |
| [4] | HITOKI G, ISHIKAWA A, TAKATA T, et al. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm)[J]. ChemInform, 2002, 33(45): 7. |
| [5] | FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582. |
| [6] | THOMPSON T L, YATES J TJR. Surface science studies of the photoactivation of TiO2: new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453. |
| [7] | MARTIN D J, UMEZAWA N, CHEN X W, et al. Facet engineered Ag3PO4 for efficient water photooxidation[J]. Energy & Environmental Science, 2013, 6(11): 3380-3386. |
| [8] | LI R G, ZHANG F X, WANG D E, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4 [J]. Nature Communications, 2013, 4: 1432. |
| [9] | KAMAT P V. Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics[J]. Accounts of Chemical Research, 2017, 50(3): 527-531. |
| [10] | WU Y A, MCNULTY I, LIU C, et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2019, 4(11): 957-968. |
| [11] | LIU W, ZHANG H X, LI C M, et al. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting[J]. Journal of Energy Chemistry, 2020, 47: 333-345. |
| [12] | PAN Y, CHEN S, JIA Y L. First-principles investigation of phonon dynamics and electrochemical performance of TiO2- x oxides lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6207-6216. |
| [13] | CHEN S, PAN Y. Noble metal interlayer-doping enhances the catalytic activity of 2H-MoS2 from first-principles investigations[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21040-21049. |
| [14] | DOMEN K, KUDO A, SHINOZAKI A, et al. Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts[J]. Journal of the Chemical Society, Chemical Communications, 1986(4): 356. |
| [15] | JLIDI Z, BAACHAOUI S, RAOUAFI N, et al. Temperature effect on structural,morphological and optical properties of 2D-MoS2 layers: an experimental and theoretical study[J]. Optik, 2021, 228: 166166. |
| [16] | KUDO A, TANAKA A, DOMEN K, et al. Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst[J]. Journal of Catalysis, 1988, 111(1): 67-76. |
| [17] | YANG B, WANG Z W, ZHAO J J, et al. 1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25436-25447. |
| [18] | TYE C T, SMITH K J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst[J]. Catalysis Today, 2006, 116(4): 461-468. |
| [19] | PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with monolayer MoS2 [J]. Nano Letters, 2013, 13(2): 668-673. |
| [20] | TANAKA H, OKUMIYA T, UEDA S K, et al. Preparation of nanosheet by exfoliation of layered iron phenyl phosphate under ultrasonic irradiation[J]. Materials Research Bulletin, 2009, 44(2): 328-333. |
| [21] | LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2 [J]. Nature Nanotechnology, 2013, 8(7): 497-501. |
| [22] | MCDONNELL S, ADDOU R, BUIE C, et al. Defect-dominated doping and contact resistance in MoS2 [J]. ACS Nano, 2014, 8(3): 2880-2888. |
| [23] | ROY K, PADMANABHAN M, GOSWAMI S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11): 826-830. |
| [24] | CHENG R Q, WANG F, YIN L, et al. High-performance,multifunctional devices based on asymmetric van der Waals heterostructures[J]. Nature Electronics, 2018, 1(6): 356-361. |
| [25] | CHENG R, LI D H, ZHOU H L, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes[J]. Nano Letters, 2014, 14(10): 5590-5597. |
| [26] | DENG Y X, LUO Z, CONRAD N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. ACS Nano, 2014, 8(8): 8292-8299. |
| [27] | FURCHI M M, POSPISCHIL A, LIBISCH F, et al. Photovoltaic effect in an electrically tunable van der waals heterojunction[J]. Nano Letters,2014, 14(8): 4785-4791. |
| [28] | LV R T, TERRONES H, ELÍAS A L, et al. Two-dimensional transition metal dichalcogenides: clusters,ribbons,sheets and more[J]. Nano Today, 2015, 10(5): 559-592. |
| [29] | HONG J H, JIN C H, YUAN J, et al. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/ electronics,nanomagnetism,and catalysis[J]. Advanced Materials, 2017, 29(14): 1606434. |
| [30] | LI H, TSAI C, KOH A L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nature Materials, 2016, 15(1): 48-53. |
| [31] | NOH J Y, KIM H, KIM Y S. Stability and electronic structures of native defects in single-layer MoS2 [J]. Physical Review B, 2014, 89(20): 205417. |
| [32] | PARK J H, SANNE A, GUO Y Z, et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface[J]. Science Advances, 2017, 3(10): e1701661. |
| [33] | REN X P, MA Q, FAN H B, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chemical Communications, 2015, 51(88): 15997-16000. |
| [34] | DOLUI K, RUNGGER I, PEMMARAJU CDAS, et al. Possible doping strategies for MoS2 monolayers: an ab initio study[J]. Physical Review B, 2013, 88(7): 075420. |
| [35] | MA X Y, LI J Q, AN C H, et al. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production[J]. Nano Research, 2016, 9(8): 2284-2293. |
| [36] | ZHANG H Y, TIAN Y, ZHAO J X, et al. Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N- and P-doping[J]. Electrochimica Acta, 2017, 225: 543-550. |
| [37] | HUANG H, FENG X, DU C C, et al. High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity[J]. Chemical Communications, 2015, 51(37): 7903-7906. |
| [38] | QIN C B, GAO Y, QIAO Z X, et al. Atomic-layered MoS2 as a tunable optical platform[J]. Advanced Optical Materials, 2016, 4(10): 1429-1456. |
| [39] | KIM H J, SONG Y W, NAMGUNG S D, et al. Optical properties of the crumpled pattern of selectively layered MoS2 [J]. Optics Letters, 2018, 43(19): 4590-4593. |
| [40] | WANG C Y, LI S R, WANG S F, et al. First principles study of the effect of uniaxial strain on monolayer MoS2 [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144: 115401. |
| [41] | GAO X W, WANG Y, SU Q, et al. Electronic and optical properties of strain-regulated O-doped monolayer MoS2 [J]. Modern Physics Letters B, 2024, 38(23): 2450200. |
| [42] | CHOI S M, JHI S H, SON Y W. Controlling energy gap of bilayer graphene by strain[J]. Nano Letters, 2010, 10(9): 3486-3489. |
| [43] | 朱丽雯, 舒龙龙, 梁任宏, 等. 具有大应变梯度的柔性SrRuO3褶皱薄膜的设计[J]. 宁夏大学学报(自然科学版), 2024, 45(2): 203-208. |
| ZHU L W, SHU L L, LIANG R H, et al. Design of flexible SrRuO3 wrinkled films with strain gradient[J]. Journal of Ningxia University (Natural Science Edition), 2024, 45(2): 203-208 (in Chinese). | |
| [44] | CHOUDHARY M, SHITAL S, YA’AKOBOVITZ A, et al. Shear strain bandgap tuning of monolayer MoS2 [J]. Applied Physics Letters, 2020, 117(22): 223102. |
| [45] | ZHOU C, LIU Z J, DOU X L, et al. Effect of strain on lattice thermal conductivity of diamond[J]. Vacuum, 2025, 233: 113935. |
| [46] | ADELSBERGER C, BOSCO S, KLINOVAJA J, et al. Valley-free silicon fins caused by shear strain[J]. Physical Review Letters, 2024, 133(3): 037001. |
| [47] | ZHAO Y S, YANG L, WEI X B, et al. Tuning the photoelectric properties of ZrS2/ZrSe2 heterojunction via shear strain and electric field[J]. Chemical Physics, 2025,589: 112518. |
| [48] | FANG Y Q, PAN J, HE J Q, et al. Structure re-determination and superconductivity observation of bulk 1T MoS2 [J]. Angewandte Chemie International Edition, 2018, 57(5): 1232-1235. |
| [49] | PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249. |
| [50] | MAK K F, LEE C G, HONE J, et al. Atomically Thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. |
| [51] | ZHU Z Y, CHENG Y C, SCHWINGENSCHLÖGL U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B, 2011, 84(15): 153402. |
| [52] | FTHENAKIS Z G, MENON M. Unusual phase transition mechanism induced by shear strain in Si2BN planar structures and comparison with graphene: an ab initio DFT study[J]. Physical Chemistry Chemical Physics, 2025, 27(7): 3552-3557. |
| [53] | RUIZ-CIGARRILLO O, FLORES-RANGEL G, ZAVALA-MORAN U, et al. Optical properties of 2D GeTe under strain: a DFT study[J]. AIP Advances, 2025,15(1): 015135. |
| [54] | CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. |
| [55] | PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations: a reply[J]. Physical Review B, 1977, 16(4): 1748-1749. |
| [56] | KADANTSEV E S, HAWRYLAK P. Electronic structure of a single MoS2 monolayer[J]. Solid State Communications, 2012, 152(10): 909-913. |
| [57] | KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 [J]. Physical Review B, 2011, 83(24): 245213. |
| [58] | PAN F C, LAN W J, LI H X, et al. Strain-induced magnetic coupling oscillations in Mn doped monolayer 2H-MoS2 [J]. Physica B: Condensed Matter, 2025, 699: 416847. |
| [59] | CHENG Y C, ZHANG Q Y, SCHWINGENSCHLÖGL U. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides[J]. Physical Review B, 2014, 89(15): 155429. |
| [60] | HOU B W, ZHANG Y M, ZHANG H, et al. Room temperature bound excitons and strain-tunable carrier mobilities in Janus monolayer transition-metal dichalcogenides[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3116-3128. |
| [61] | CIANCI S, BLUNDO E, TUZI F, et al. Strain engineering of the transition metal dichalcogenide chalcogen-alloy WSSe[J]. Journal of Applied Physics, 2024, 135(24): 244304. |
| [62] | WAKABAYASHI Y K, KOBAYASHI M, SEKI Y, et al. SrRuO3 under tensile strain: thickness-dependent electronic and magnetic properties[J]. Journal of Applied Physics, 2024, 136(4): 043907. |
| [63] | 洪欣欣, 何力军, 代彦明, 等. 残余应力、晶粒尺寸对铍纳米压入行为影响的数值分析[J]. 宁夏大学学报(自然科学版), 2024, 45(1): 31-35. |
| HONG X X, HE L J, DAI Y M, et al. Numerical analysis of the influence of residual stress and grain size on the indentation behavior of beryllium[J]. Journal of Ningxia University (Natural Science Edition), 2024, 45(1): 31-35 (in Chinese). | |
| [64] | 黄 昆. 固体物理学[M]. 1版. 北京: 高等教育出版社, 1988. |
| HUANG K. Solid state physics[M]. 1 st ed. Beijing: Higher Education Press, 1988 (in Chinese). | |
| [65] | 张家琪, 林雪玲, 田文虎, 等. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| ZHANG J Q, LIN X L, TIAN W H, et al. Effect of strain on optical properties of Si doped A-TiO2 studied by the first-principles[J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628 (in Chinese). | |
| [66] | 张 燕, 张 洁, 颜 安,等. 应变调控单层2H-MoS2的能带结构和光学性质[J]. 中南民族大学学报(自然科学版), 2023, 42(2): 208-215. |
| ZHANG Y, ZHANG J, YAN A, et al. Band structure and optical properties of monolayer 2H-MoS2 tuned by strain[J]. Journal of South-Central Minzu University (Natural Science Edition), 2023, 42(2): 208-215 (in Chinese). | |
| [67] | ZHENG H L, YANG B S, WANG D D, et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain[J]. Applied Physics Letters, 2014, 104(13): 132403. |
| [68] | MIN S L, LI Y, QU Z Y, et al. Room-temperature ferromagnetism of chromium-doped molybdenum disulfide synthesized via chemical vapor deposition[J]. Journal of Applied Physics, 2025, 137(2): 024302. |
| [1] | 姚函妤, 陈楷, 易雨薇, 周延琪, 李霜, 唐群涛. 热处理温度与Er掺杂量对氧化镍薄膜光学与电学特性的影响[J]. 人工晶体学报, 2025, 54(9): 1622-1632. |
| [2] | 窦瑛, 王英民, 高彦昭, 程红娟. 硒添加量对硒化镉单晶电学和光学性能的影响研究[J]. 人工晶体学报, 2025, 54(8): 1403-1409. |
| [3] | 陈思贤, 徐乐, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. I-掺杂Cs3Bi2Br9晶体的生长及其光学性能调控[J]. 人工晶体学报, 2025, 54(7): 1282-1288. |
| [4] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [5] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [6] | 李鹏程, 周军, 王伟刚, 吴坤尧, 李兆. Li2Mg3TiO6:Eu3+红色荧光粉的合成及其在白光LED上的应用[J]. 人工晶体学报, 2025, 54(4): 643-651. |
| [7] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [8] | 黄成, 钱艳楠. 4-氯苯磺酸钠多功能添加剂实现高效碳基CsPbI2Br太阳能电池[J]. 人工晶体学报, 2025, 54(12): 2190-2199. |
| [9] | 贾梦江, 黄文奇, 王海, 郑军. 锗铅合金中非替位点缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(12): 2164-2172. |
| [10] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [11] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [12] | 董玉娟, 刘召江, 朱绮睿. 黄光发射纯Zn3V2O8荧光粉的制备及光学性能研究[J]. 人工晶体学报, 2024, 53(8): 1416-1421. |
| [13] | 凌昊, 徐乐, 陈思贤, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. 溶液法生长大尺寸CsCu2I3钙钛矿单晶及其光学性能研究[J]. 人工晶体学报, 2024, 53(7): 1121-1126. |
| [14] | 王蕾蕾, 尹振华, 张蕴可, 刘磊, 陈名. 适用于太阳能电池的新型无铅四元硫碘化物优异光电性能的第一性原理研究[J]. 人工晶体学报, 2024, 53(5): 803-809. |
| [15] | 郝敬林, 邓丽芬, 王凯悦, 宋惠, 江南, 西村一仁. 高温高压合成掺杂金刚石研究进展[J]. 人工晶体学报, 2024, 53(2): 194-209. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS