欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2190-2199.DOI: 10.16553/j.cnki.issn1000-985x.2025.0121

• 研究论文 • 上一篇    下一篇

4-氯苯磺酸钠多功能添加剂实现高效碳基CsPbI2Br太阳能电池

黄成(), 钱艳楠()   

  1. 广东工业大学材料与能源学院,广州 510006
  • 收稿日期:2025-06-05 出版日期:2025-12-20 发布日期:2026-01-04
  • 通信作者: 钱艳楠,博士,教授。E-mail:qianyannan@gdut.edu.cn
  • 作者简介:黄成(2001—),男,湖北省人,硕士研究生。E-mail:1986355246@qq.com
  • 基金资助:
    广州市科技重大专项基金项目(201804020005);广州市重点项目(KY285252)

Multifunctional Additive of Sodium 4-Chlorobenzenesulfonate Enables Efficient Carbon-Based CsPbI2Br Perovskite Solar Cells

HUANG Cheng(), QIAN Yannan()   

  1. School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China
  • Received:2025-06-05 Online:2025-12-20 Published:2026-01-04

摘要: 碳基无空穴传输层CsPbI2Br钙钛矿太阳能电池因低廉的制备成本和优异的热稳定性而备受关注。然而,由于CsPbI2Br薄膜在快速结晶过程会产生高密度缺陷,引起陷阱辅助的非辐射复合与离子迁移问题,显著加剧器件能量损失与性能衰退。本研究采用简单实用的添加剂策略,通过4-氯苯磺酸钠(Na-4Cl-BZS)中阴(4Cl-BZS-)阳(Na+)离子的协同作用调控CsPbI2Br结晶、钝化缺陷。研究发现,4Cl-BZS-阴离子通过苯环两端的—SO3-和—Cl官能团与Pb2+形成配位结合,钝化低配位的Pb2+,提高卤素空位缺陷形成能,并促进钙钛矿多晶薄膜沿(100)晶面择优取向生长,从而获得高质量CsPbI2Br薄膜。此外,金属Na+通过间隙位掺杂显著提高了卤素离子的迁移势垒,提升钙钛矿晶体稳定性。得益于阴阳离子的协同作用,所制备的碳基无空穴传输层CsPbI2Br钙钛矿太阳能电池实现13.07%的光电转换效率,同时显著提升开路电压(1.18 V)和填充因子(74.26%)。

关键词: 全无机钙钛矿太阳能电池; CsPbI2Br钙钛矿; 添加剂工程; 结晶调控; 缺陷钝化; 第一性原理计算

Abstract: Carbon-based hole-transport-layer-free CsPbI2Br perovskite solar cells have attracted widespread attention owing to their low fabrication cost and excellent thermal stability. However, the rapid crystallization of CsPbI2Br films often leads to a high density of defects, resulting in trap-assisted non-radiative recombination and severe ion migration, which significantly accelerate energy losses and performance degradation of the devices. In this study, a simple and practical additive strategy was adopted to regulate the crystallization and passivate defects in CsPbI2Br using the synergistic effects of anions (4Cl-BZS-) and cations (Na+) from sodium 4-chlorobenzenesulfonate (Na-4Cl-BZS). The 4Cl-BZS- anions coordinate with Pb2+ through the —SO3- and —Cl functional groups located at both ends of the benzene ring, effectively passivating under-coordinated Pb2+ and increasing the formation energy of halide vacancies. This interaction also promotes preferential growth of the perovskite polycrystalline film along the (100) plane, yielding high-quality CsPbI2Br films. Moreover, Na+ cations incorporate into the perovskite lattice via interstitial doping, significantly increasing the migration barrier of halide ions and enhancing the crystal stability of the perovskite. Benefiting from the cooperative action of the cation-anion pair, the resulting carbon-based hole-transport-layer-free CsPbI2Br perovskite solar cell achieves a power conversion efficiency of 13.07%, along with an open-circuit voltage of 1.18 V and a fill factor of 74.26%.

Key words: all-inorganic perovskite solar cell; CsPbI2Br perovskite; additive engineering; crystallization regulation; defect passivation; first-principle calculation

中图分类号: