[1] GELLER S. Crystal structure of β-Ga2O3[J]. The Journal of Chemical Physics, 1960, 33(3): 676-684. [2] ONUMA T, SAITO S, SASAKI K, et al. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy[J]. Japanese Journal of Applied Physics, 2015, 54(11): 112601. [3] MAREZIO M, REMEIKA J P. Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2-xFexO3[J]. The Journal of Chemical Physics, 1967, 46(5): 1862-1865. [4] AKAIWA K, FUJITA S. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition[J]. Japanese Journal of Applied Physics, 2012, 51(7R): 070203. [5] LIU Z F, YAMAZAKI T, SHEN Y B, et al. O2 and CO sensing of Ga2O3 multiple nanowire gas sensors[J]. Sensors and Actuators B: Chemical, 2008, 129(2): 666-670. [6] KAUR D, VASHISHTHA P, KHAN S A, et al. Phase dependent radiation hardness and performance analysis of amorphous and polycrystalline Ga2O3 solar-blind photodetector against swift heavy ion irradiation[J]. Journal of Applied Physics, 2020, 128(6): 065902. [7] ZHONG M Z, WEI Z M, MENG X Q, et al. High-performance single crystalline UV photodetectors of β-Ga2O3[J]. Journal of Alloys and Compounds, 2015, 619: 572-575. [8] ZHANG Y J, YAN J L, LI Q S, et al. Structural and optical properties of N-doped β-Ga2O3 films deposited by RF magnetron sputtering[J]. Physica B: Condensed Matter, 2011, 406(15/16): 3079-3082. [9] JAMWAL N S, KIANI A. Gallium oxide nanostructures: a review of synthesis, properties and applications[J]. Nanomaterials, 2022, 12(12): 2061. [10] CHOI J H, HAM M H, LEE W, et al. Fabrication and characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation[J]. Solid State Communications, 2007, 142(8): 437-440. [11] LI M C, LU C, GAO L, et al. Ultrasensitive self-powered flexible crystalline β-Ga2O3-based photodetector obtained through lattice symmetry and band alignment engineering[J]. ACS Applied Materials & Interfaces, 2024, 16(32): 42406-42414. [12] TANG R F, LI G Q, HU X, et al. Micro-nanoarchitectonics of Ga2O3/GaN core-shell rod arrays for high-performance broadband ultraviolet photodetection[J]. Crystals, 2023, 13(2): 366. [13] FANG Y J, ARMIN A, MEREDITH P, et al. Accurate characterization of next-generation thin-film photodetectors[J]. Nature Photonics, 2019, 13(1): 1-4. [14] GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. [15] KUMAR S, PRATIYUSH A S, DOLMANAN S B, et al. UV detector based on InAlN/GaN-on-Si HEMT stack with photo-to-dark current ratio > 107[J]. Applied Physics Letters, 2017, 111(25): 251103. [16] KHAN U, LUO Y T, TANG L, et al. Controlled vapor-solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors[J]. Advanced Functional Materials, 2019, 29(14): 1807979. [17] BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718. [18] ZHANG Y H, LUO Z Z, HU F R, et al. Realization of vertical and lateral van der Waals heterojunctions using two-dimensional layered organic semiconductors[J]. Nano Research, 2017, 10(4): 1336-1344. [19] PULFREY D L, KUEK J J, LESLIE M P, et al. High UV/solar rejection ratios in GaN/AlGaN/GaN p-i-n photodiodes[J]. IEEE Transactions on Electron Devices, 2001, 48(3): 486-489. [20] WU W T, HUANG H, WANG Y L, et al. Structure engineering of Ga2O3 photodetectors: a review[J]. Journal of Physics D: Applied Physics, 2025, 58(6): 063003. [21] RAZEGHI M, ROGALSKI A. Semiconductor ultraviolet detectors[J]. Journal of Applied Physics, 1996, 79(10): 7433-7473. [22] HACKAM R, HARROP P. Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes[J]. IEEE Transactions on Electron Devices, 1972, 19(12): 1231-1238. [23] ELAHI E, AHMAD M, DAHSHAN A, et al. Contemporary innovations in two-dimensional transition metal dichalcogenide-based P-N junctions for optoelectronics[J]. Nanoscale, 2024, 16(1): 14-43. [24] ZHOU J X, ZHANG N N, LIU J M, et al. The rise of 2D materials-based photoelectrochemical photodetectors: progress and prospect[J]. Advanced Optical Materials, 2024, 12(22): 2400706. [25] YU S J, DING M F, MU W X, et al. β-Ga2O3 micro-flake FET SBPD with record detectivity of 3.87×1017 Jones for weak light detection[C]//2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). April 8-11, 2021. Chengdu, China. IEEE, 2021. [26] LI X X, ZENG G, LI Y C, et al. High responsivity and flexible deep-UV phototransistor based on Ta-doped β-Ga2O3[J]. NPJ Flexible Electronics, 2022, 6: 47. [27] COTTAM N D, DEWES B T, SHIFFA M, et al. Thin Ga2O3 layers by thermal oxidation of van der Waals GaSe nanostructures for ultraviolet photon sensing[J]. ACS Applied Nano Materials, 2024, 7(15): 17553-17560. [28] DU J Y, XING J, GE C, et al. Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD[J]. Journal of Physics D: Applied Physics, 2016, 49(42): 425105. [29] LI B, DONG Z Y, XU W, et al. Synthesis of InAl-alloyed Ga2O3 nanowires for self-powered ultraviolet detectors by a CVD method[J]. RSC Advances, 2024, 14(32): 22847-22857. [30] DONG H Y, MA S F, NIU Y P, et al. Fast response solar-blind ultraviolet photodetector based on the β-Ga2O3/p-Si heterojunction[J]. IEEE Electron Device Letters, 2024, 45(4): 554-557. [31] LIU Y, WEI Y, SHA S L, et al. Flexible self-powered solar-blind Schottky photodetectors based on individual Ga2O3 microwire/MXene junctions[J]. CrystEngComm, 2023, 25(37): 5324-5333. [32] ZHAO K, YANG J H, WANG P, et al. β-Ga2O3 nanoribbon with ultra-high solar-blind ultraviolet polarization ratio[J]. Advanced Materials, 2024, 36(46): 2406559. [33] ALHALAILI B, VIDU R, SAIF ISLAM M. The growth of Ga2O3 nanowires on silicon for ultraviolet photodetector[J]. Sensors, 2019, 19(23): 5301. [34] JIANG T C, QIU Y, TAO J, et al. Ga2O3@Al2O3 core-shell nanowires for high-performance solar-blind photodetectors[J]. ACS Applied Nano Materials, 2023, 6(11): 9849-9856. [35] SHANGGUAN L, HE L B, DONG S P, et al. Fabrication of β-Ga2O3 nanotubes via sacrificial GaSb-nanowire templates[J]. Nanomaterials, 2023, 13(20): 2756. [36] QU L H, JI J, LIU X, et al. Oxygen-vacancy-dependent high-performance α-Ga2O3 nanorods photoelectrochemical deep UV photodetectors[J]. Nanotechnology, 2023, 34(22): 225203. [37] WANG X, DING K, HUANG L J, et al. Enhancing the performance of self-powered deep-ultraviolet photoelectrochemical photodetectors by constructing α-Ga2O3@a-Al2O3 core-shell nanorod arrays for Solar-Blind imaging[J]. Applied Surface Science, 2024, 648: 159022. [38] HWANG W S, VERMA A, PEELAERS H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes[J]. Applied Physics Letters, 2014, 104(20): 203111. [39] SCHMIDT C, RAHAMAN M, ZAHN D R T. Conversion of 2-dimensional GaSe to 2-dimensional β-Ga2O3 by thermal oxidation[J]. Nanotechnology, 2022, 33(4): 045702. [40] LONG H R, XIONG T, HU J W, et al. Solar-blind ultraviolet anisotropic polarization detection by β-Ga2O3 based Schottky photodiodes[J]. IEEE Electron Device Letters, 2024, 45(7): 1153-1156. [41] FILIPPO E, SICILIANO M, GENGA A, et al. Single crystalline β-Ga2O3 nanowires synthesized by thermal oxidation of GaSe layer[J]. Materials Research Bulletin, 2013, 48(5): 1741-1744. [42] CHEN W, JIAO T, LI Z M, et al. Preparation of β-Ga2O3 nanostructured films by thermal oxidation of GaAs substrate[J]. Ceramics International, 2022, 48(4): 5698-5703. [43] ZHANG L Y, LI Y W, XIU X Q, et al. Preparation of vertically aligned GaN@Ga2O3 core-shell heterostructured nanowire arrays and their photocatalytic activity for degradation of Rhodamine B[J]. Superlattices and Microstructures, 2020, 143: 106556. [44] DING S, ZHANG L Y, LI Y W, et al. A selective etching route for large-scale fabrication of β-Ga2O3 micro-/ nanotube arrays[J]. Nanomaterials, 2021, 11(12): 3327. [45] HE W Y, WU W X, LI Q X, et al. Facile fabrication of Ga2O3 nanorods for photoelectrochemical water splitting[J]. ChemNanoMat, 2020, 6(2): 208-211. [46] LIU R R, LI L, WANG Q, et al. Photocatalytic conversion of CO2 to CO with a p-n heterojunction based on core-shell β-Ga2O3@CoGa2O4 nanorods[J]. ACS Applied Nano Materials, 2024, 7(5): 5308-5316. |