[1] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in β-Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. [2] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381. [3] HOU X H, ZOU Y N, DING M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications[J]. Journal of Physics D Applied Physics, 2021, 54(4): 043001. [4] VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426. [5] ITO T, TOMIOKA Y, RACKERSEDER F, et al. Growth of β-Ga2O3 crystal with a diameter of 30 mm by laser-diode-heated floating zone (LDFZ) method[J]. Journal of Crystal Growth, 2024, 634: 127673. [6] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//Oxide-based Materials and Devices IX. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018. [7] AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506. [8] WANG M G, MU S, SPECK J S, et al. First-principles study of twin boundaries and stacking faults in β-Ga2O3[J]. Advanced Materials Interfaces, 2023: 2300318. [9] YAO Y Z, SUGAWARA Y, ISHIKAWA Y. Identification of Burgers vectors of dislocations in monoclinic β-Ga2O3 via synchrotron X-ray topography[J]. Journal of Applied Physics, 2020, 127(20): 205110. [10] YAO Y Z, ISHIKAWA Y, SUGAWARA Y. Slip planes in monoclinic β-Ga2O3 revealed from its {010} face via synchrotron X-ray diffraction and X-ray topography[J]. Japanese Journal of Applied Physics, 2020, 59(12): 125501. [11] HANADA K, MORIBAYASHI T, KOSHI K, et al. Origins of etch pits in β-Ga2O3(010) single crystals[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BG. [12] ISAJI S, MAEDA I, OGAWA N, et al. Relationship between propagation angle of dislocations in β-Ga2O3 (001) bulk wafers and their etch pit shapes[J]. Journal of Electronic Materials, 2023, 52(8): 5093-5098. [13] OSHIMA T, OKUNO T, ARAI N, et al. Wet etching of β-Ga2O3 substrates[J]. Japanese Journal of Applied Physics, 2009, 48(4R): 040208. [14] LI P K, BU Y Z, CHEN D Y, et al. Investigation of the crack extending downward along the seed of the β-Ga2O3 crystal grown by the EFG method[J]. CrystEngComm, 2021, 23(36): 6300-6306. [15] NAKAI K, NAGAI T, NOAMI K, et al. Characterization of defects in β-Ga2O3 single crystals[J]. Japanese Journal of Applied Physics, 2015, 54(5): 051103. [16] OGAWA K, OGAWA N, KOSAKA R, et al. AFM observation of etch-pit shapes on β-Ga2O3 (001) surface formed by molten alkali etching[J]. Materials Science Forum, 2020, 1004: 512-518. [17] FUJIE F, PENG H Y, AILIHUMAER T, et al. Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC[J]. Acta Materialia, 2021, 208: 116746. [18] SOUKHOJAK A, STANNARD T, MANNING I, et al. Measurement of dislocation density in SiC wafers using production XRT[J]. Materials Science Forum, 2022, 1062: 304-308. [19] YAO Y Z, TSUSAKA Y, SASAKI K, et al. Large-area total-thickness imaging and Burgers vector analysis of dislocations in β-Ga2O3 using bright-field X-ray topography based on anomalous transmission[J]. 2022, 121(1): 012105. [20] YAMAGUCHI H, KURAMATA A. Stacking faults in β-Ga2O3 crystals observed by X-ray topography[J]. Journal of Applied Crystallography, 2018, 51(Pt 5): 1372-1377. [21] SDOEUNG S, SASAKI K, KURAMATA A, et al. Identification of dislocation responsible for leakage current in halide vapor phase epitaxial (001) β-Ga2O3 Schottky barrier diodes investigated via ultrahigh-sensitive emission microscopy and synchrotron X-ray topography[J]. Applied Physics Express, 2022, 15(11): 111001. [22] YAO Y Z, ISHIKAWA Y, SUGAWARA Y. Dislocation classification of a large-area β-Ga2O3 single crystal via contrast analysis of affine-transformed X-ray topographs[J]. Journal of Crystal Growth, 2020, 548: 125825. |