[1] YUAN Y, HAO W B, MU W X, et al. Toward emerging gallium oxide semiconductors: a roadmap[J]. Fundamental Research, 2021, 1(6): 697-716. [2] SASAKI K. Prospects for β-Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101. [3] XIA N, LIU Y Y, WU D, et al. β-Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2023, 935: 168036. [4] KURAMATA A, KOSHI K, WATANABE S, et al. Bulk crystal growth of Ga2O3[C]//Oxide-based Materials and Devices IX. January 27-February 1, 2018. San Francisco, USA. SPIE, 2018, 10533: 9-14. [5] Novel Crystal Technology, Inc., Shinshu University. Novel crystal technology achieves breakthrough in Ga2O3 crystal growth, paving way for larger, higher-quality wafers[EB/OL]. (2024-3-29)[2024-10-30]. https://novelcrystal.co.jp/eng/2023/2340/. [6] KIM H C, JANARDHANAM V, POKHREL S, et al. Epilayer thickness effect on the electrical and breakdown characteristics of vertical β-Ga2O3 Schottky barrier diode[J]. Journal of Crystal Growth, 2025, 649: 127941. [7] LI W S, HU Z Y, NOMOTO K, et al. 1230 V β-Ga2O3 trench Schottky barrier diodes with an ultra-low leakage current of <1 μA/cm2[J]. Applied Physics Letters, 2018, 113(20): 202101. [8] HOFFMANN G, BUDDE M, MAZZOLINI P, et al. Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: the examples of SnO and Ga2O[J]. APL Materials, 2020, 8(3): 031110. [9] VOGT P, HENSLING F V E, AZIZIE K, et al. Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy[J]. APL Materials, 2021, 9(3): 031101. [10] WANG Q L, CHEN J, HUANG P, et al. Influence of growth temperature on the characteristics of β-Ga2O3 epitaxial films and related solar-blind photodetectors[J]. Applied Surface Science, 2019, 489: 101-109. [11] HUANG P, CHEN L F, SHI D T, et al. MgO (100) as an affordable support for heteroepitaxial growth of high-quality β-Ga2O3 thin films and related highly-sensitive solar-blind UV photodetectors[J]. Applied Surface Science, 2023, 634: 157641. [12] WASEEM A, REN Z J, HUANG H C, et al. A review of recent progress in β-Ga2O3 epitaxial growth: effect of substrate orientation and precursors in metal-organic chemical vapor deposition[J]. Physica Status Solidi (a), 2023, 220(8): 2200616. [13] BHUIYAN A F M A U, FENG Z X, MENG L Y, et al. Tutorial: metalorganic chemical vapor deposition of β-Ga2O3 thin films, alloys, and heterostructures[J]. Journal of Applied Physics, 2023, 133(21): 211103. [14] RAFIQUE S, HAN L, NEAL A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition[J]. Applied Physics Letters, 2016, 109(13): 132103. [15] ZHANG W H, ZHANG H Z, ZHANG Z Z, et al. Heteroepitaxial β-Ga2O3 thick films on sapphire substrate by carbothermal reduction rapid growth method[J]. Semiconductor Science and Technology, 2022, 37(8): 085014. [16] OSHIMA Y, VLLORA E G, SHIMAMURA K. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy[J]. Journal of Crystal Growth, 2015, 410: 53-58. [17] NITTA K, SASAKI K, KURAMATA A, et al. Investigation of high speed β-Ga2O3 growth by solid-source trihalide vapor phase epitaxy[J]. Japanese Journal of Applied Physics, 2023, 62: SF1021. [18] BARIN I. Thermochemical data of pure substances[M]. 3rd ed. Weinheim (Federal Republic of Germany): VCH Verlagsgesellschaft mbH, 1995: 209-742. [19] THIEU Q T, SASAKI K, KURAMATA A. Suboxide vapor phase epitaxy for growth of high-purity gallium oxide[J]. Japanese Journal of Applied Physics, 2023, 62: SF1009. [20] LI Y W, XIU X Q, XU W L, et al. Microstructural analysis of heteroepitaxial β-Ga2O3 films grown on (0001) sapphire by halide vapor phase epitaxy[J]. Journal of Physics D: Applied Physics, 2021, 54(1): 014003. [21] LV Y, MA J, MI W, et al. Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique[J]. Vacuum, 2012, 86(12): 1850-1854. [22] TAUC J, MENTH A. States in the gap[J]. Journal of Non-Crystalline Solids, 1972, 8: 569-585. |