Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 721-736.DOI: 10.16553/j.cnki.issn1000-985x.2025.0054
• Invited • Next Articles
ZHOU Min(), ZHOU Hong(
), ZHANG Jincheng, HAO Yue
Received:
2025-03-19
Online:
2025-05-15
Published:
2025-05-27
CLC Number:
ZHOU Min, ZHOU Hong, ZHANG Jincheng, HAO Yue. Research Progress on β-Ga2O3 Radio Frequency Power Devices[J]. Journal of Synthetic Crystals, 2025, 54(5): 721-736.
材料 | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 |
---|---|---|---|---|---|
带隙/eV | 1.1 | 1.4 | 3.3 | 3.4 | 4.5~4.9 |
电子迁移率/(cm2·V-1·s-1) | 1 400 | 8 000 | 1 000 | 1 250 | 200~250 |
临界击穿场强/(MV·cm-1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 |
饱和速率/(107 cm·s-1) | 1 | 1.2 | 2 | 2.5 | 1.8~2 |
介电常数,ε | 11.8 | 12.9 | 9.4 | 9 | 10 |
热导率/(W·cm-1·K-1) | 1.5 | 0.5 | 4.9 | 2.3 | 0.109~0.27 |
BFOM= | 1 | 14.7 | 317 | 870 | 3 444 |
JFOM= | 1 | 1.8 | 278 | 1 089 | 2 844 |
BHFFOM= | 1 | 10.1 | 46.3 | 100.8 | 142.2 |
Table 1 Comparison of β-Ga2O3 properties with other mainstream semiconductor materials[6,11]
材料 | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 |
---|---|---|---|---|---|
带隙/eV | 1.1 | 1.4 | 3.3 | 3.4 | 4.5~4.9 |
电子迁移率/(cm2·V-1·s-1) | 1 400 | 8 000 | 1 000 | 1 250 | 200~250 |
临界击穿场强/(MV·cm-1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 |
饱和速率/(107 cm·s-1) | 1 | 1.2 | 2 | 2.5 | 1.8~2 |
介电常数,ε | 11.8 | 12.9 | 9.4 | 9 | 10 |
热导率/(W·cm-1·K-1) | 1.5 | 0.5 | 4.9 | 2.3 | 0.109~0.27 |
BFOM= | 1 | 14.7 | 317 | 870 | 3 444 |
JFOM= | 1 | 1.8 | 278 | 1 089 | 2 844 |
BHFFOM= | 1 | 10.1 | 46.3 | 100.8 | 142.2 |
Fig.5 Several techniques that contribute to the heat dissipation of gallium oxide. (a) Mechanical exfoliation[55]; (b) smart-cut[56]; (c) flip-chip package[60]
Fig.6 (a) A cross section schematic and a focused ion beam (FIB) cross sectional image of β-Ga2O3 MOSFET device; (b) large-signal power properties of β-Ga2O3 MOSFET at the frequency of 0.8 GHz[61]
Fig.7 (a) A cross section schematic of field-plated β-Ga2O3 MOSFET device; (b) large-signal power properties of field-plated β-Ga2O3 MOSFET at the frequency of 1 GHz[62]
Fig.8 Detla-doped β-Ga2O3 MOSFET[64]. (a) A cross section schematic; (b) scanning electron microscope image of T-shaped gate structure; (c) small-signal frequency characteristics
Fig.9 L-band β-Ga2O3 MOSFET[66]. (a) Schematic of the devic; (b) large-signal characteristics in pulsed mode. O2-annealing processed β-Ga2O3 MOSFET: (c) cross-sectional schematic of the device; (d) power sweep curve
Fig.10 Schematic of device structure and small signal characteristics of three β-Ga2O3 MOSFETs with different structures[69]. (a),(b) 2DEG-like channel; (c),(d) thin-channel T-shaped gate structure; (e),(f) quasi-2D high mobility channel
Fig. 11 Heterointegrated Ga2O3-on-SiC MOSFETs[73]. (a) Schematic of device structure; (b) small-signal frequency characteristics; (c) large-signal characteristics at the frequency of 2 GHz
Fig.12 β-Ga2O3-on-SiC RF MOSFET with heavily doped channel[74]. (a) Schematic of device structure; (b) small-signal frequency characteristics; (c) large-signal characteristics at the frequency of 2 GHz
Fig.13 β-Ga2O3-on-SiC RF MOSFET with bi-layer gate dielectric[75]. (a) Schematic of device structure; (b) small-signal frequency characteristics; (c) and (d) large-signal characteristics at VDS = 20 V and VDS = 50 V
Structure/substrate | LG/nm | gm/(mS·mm-1) | (fT·fmax-1)/GHz | Pout/(W·mm-1) | PAE | Reference |
---|---|---|---|---|---|---|
MOSFET/Ga2O3 | 700 | 21 | 3.3/12.9 | 0.23(CW, 800 MHz) | 6.3% | [ |
MOSFET/Ga2O3 | 140 | 25 | 5.1/17.1 | — | — | [ |
MOSFET/Ga2O3 | 2 000 | — | — | 0.13(Pulse, 1 GHz) | 12% | [ |
Delta-Doped MOSFET/Ga2O3 | 120 | 44 | 27/16 | — | — | [ |
MOSFET/Ga2O3 | 200 | 17 | 9/27 | — | — | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.715(Pulse, 1 GHz) | 23.4% | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.487(Pulse, 2 GHz) | 21.2% | [ |
MOSFET/Ga2O3 | 1 000 | 11 | 1.8/4.2 | 0.43(Pulse, 1 GHz) | 12% | [ |
FinFET/Ga2O3 | 350 | 14.3 | 5.4/11/4 | — | — | [ |
2DEG-like Channel MOSFET/Ga2O3 | 150 | 25 | 29/35 | — | 9.11% | [ |
thin channel MOSFET/Ga2O3 | 175 | 52 | 11/48 | — | — | [ |
thin channel MOSFET/Ga2O3 | 90 | 36 | 27/55 | — | — | [ |
Quasi-2D channel MOSFET/Ga2O3 | 900 | 54.2 | 18/42 | — | — | [ |
HFET/Ga2O3 | 610 | — | 4/11.8 | — | — | [ |
HFET/Ga2O3 | 160 | 64 | 30/37 | — | — | [ |
Back-barrier MOSFET/Ga2O3 | 150 | 18 | 10/24 | — | — | [ |
Heterointegrated MOSFET/SiC | 100 | 57 | 47/51 | 0.296(CW, 2 GHz) | 25.7% | [ |
Heavily doped channel MOSFET/SiC | 180 | 70 | 27.6/57 | 2.3(CW, 2 GHz) 1.5(CW, 3 GHz) 1.3(CW, 5 GHz) 0.7(CW, 8 GHz) | 31% 25% 17% 7% | [ |
MOSFET with bi-layer gate dielectrics/SiC | 300 | 80 | 24/71 | 1.4(Pulse, 2 GHz) 3.1(Pulse, 2 GHz) 2.3(Pulse, 4 GHz) | 50.8% 28% 23% | [ |
Table 2 The summary of advanced β-Ga2O3 RF devices
Structure/substrate | LG/nm | gm/(mS·mm-1) | (fT·fmax-1)/GHz | Pout/(W·mm-1) | PAE | Reference |
---|---|---|---|---|---|---|
MOSFET/Ga2O3 | 700 | 21 | 3.3/12.9 | 0.23(CW, 800 MHz) | 6.3% | [ |
MOSFET/Ga2O3 | 140 | 25 | 5.1/17.1 | — | — | [ |
MOSFET/Ga2O3 | 2 000 | — | — | 0.13(Pulse, 1 GHz) | 12% | [ |
Delta-Doped MOSFET/Ga2O3 | 120 | 44 | 27/16 | — | — | [ |
MOSFET/Ga2O3 | 200 | 17 | 9/27 | — | — | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.715(Pulse, 1 GHz) | 23.4% | [ |
MOSFET/Ga2O3 | 500 | 40 | — | 0.487(Pulse, 2 GHz) | 21.2% | [ |
MOSFET/Ga2O3 | 1 000 | 11 | 1.8/4.2 | 0.43(Pulse, 1 GHz) | 12% | [ |
FinFET/Ga2O3 | 350 | 14.3 | 5.4/11/4 | — | — | [ |
2DEG-like Channel MOSFET/Ga2O3 | 150 | 25 | 29/35 | — | 9.11% | [ |
thin channel MOSFET/Ga2O3 | 175 | 52 | 11/48 | — | — | [ |
thin channel MOSFET/Ga2O3 | 90 | 36 | 27/55 | — | — | [ |
Quasi-2D channel MOSFET/Ga2O3 | 900 | 54.2 | 18/42 | — | — | [ |
HFET/Ga2O3 | 610 | — | 4/11.8 | — | — | [ |
HFET/Ga2O3 | 160 | 64 | 30/37 | — | — | [ |
Back-barrier MOSFET/Ga2O3 | 150 | 18 | 10/24 | — | — | [ |
Heterointegrated MOSFET/SiC | 100 | 57 | 47/51 | 0.296(CW, 2 GHz) | 25.7% | [ |
Heavily doped channel MOSFET/SiC | 180 | 70 | 27.6/57 | 2.3(CW, 2 GHz) 1.5(CW, 3 GHz) 1.3(CW, 5 GHz) 0.7(CW, 8 GHz) | 31% 25% 17% 7% | [ |
MOSFET with bi-layer gate dielectrics/SiC | 300 | 80 | 24/71 | 1.4(Pulse, 2 GHz) 3.1(Pulse, 2 GHz) 2.3(Pulse, 4 GHz) | 50.8% 28% 23% | [ |
1 | Accelerated adoption of RF GaN in Telecom Infrastructure as opportunities for GaN-on-Si?[EB/OL]. https://medias.yolegroup.com/uploads/2023/06/accelerated-adoption-of-gan-rf-in-telecom-infrastructure-as-opportunities-for-gan-on-si-cs-mantech.pdf. |
2 | GIACOMO M. Solid state RF amplifiers for accelerator applications[C]. Particle Accelerator Conference (PAC 09), 2009. |
3 | FORMICONE G, BURGER J, CUSTER J, et al. Solid-state RF power amplifiers for ISM CW applications based on 100 V GaN technology[C]// 2016 11th European Microwave Integrated Circuits Conference (EuMIC). October 3-4, 2016, London, UK. IEEE, 2016: 33-36. |
4 | FORMICONE G, CUSTER J, BURGER J. First demonstration of a GaN-SiC RF technology operating above 100 V in S-band[C]. International Conference on Compound Semiconductor Manufacturing Technology, 2017. |
5 | FORMICONE G F. A highly manufacturable 75-150 VDC GaN-SiC RF technology for radars and particle accelerators[J]. IEEE Transactions on Semiconductor Manufacturing, 2018, 31(4): 440-446. |
6 | HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. |
7 | GELLER S. Crystal structure of β‐Ga2O3 [J]. The Journal of Chemical Physics, 1960, 33(3): 676-684. |
8 | ÅHMAN J, SVENSSON G, ALBERTSSON J. A reinvestigation of β-gallium oxide[J]. Acta Crystallographica Section C, 1996, 52(6): 1336-1338. |
9 | UEDA N, HOSONO H, WASEDA R, et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals[J]. Applied Physics Letters, 1997, 71(7): 933-935. |
10 | MOCK A, KORLACKI R, BRILEY C, et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3 [J]. Physical Review B, 2017, 96(24): 245205. |
11 | MAIMON O, LI Q L. Progress in gallium oxide field-effect transistors for high-power and RF applications[J]. Materials, 2023, 16(24): 7693. |
12 | GREEN B, MOORE K, HILL D, et al. GaN RF device technology and applications, present and future[C]// 2013 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM). September 30 - October 3, 2013, Bordeaux, France. IEEE, 2013: 101-106. |
13 | ZHOU H, YAN Q L, ZHANG J C, et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination[J]. IEEE Electron Device Letters, 2019, 40(11): 1788-1791. |
14 | LIN C H, YUDA Y, WONG M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation[J]. IEEE Electron Device Letters, 2019, 40(9): 1487-1490. |
15 | HU Z Z, LV Y J, ZHAO C Y, et al. Beveled fluoride plasma treatment for vertical β-Ga2O3 Schottky barrier diode with high reverse blocking voltage and low turn-on voltage[J]. IEEE Electron Device Letters, 2020, 41(3): 441-444. |
16 | ZHANG Y N, ZHANG J C, FENG Z Q, et al. Impact of implanted edge termination on vertical β-Ga2O3 Schottky barrier diodes under OFF-state stressing[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3948-3953. |
17 | HAN Z, JIAN G Z, ZHOU X Z, et al. 2.7 kV low leakage vertical PtO x /β-Ga2O3 Schottky barrier diodes with self-aligned mesa termination[J]. IEEE Electron Device Letters, 2023, 44(10): 1680-1683. |
18 | DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768. |
19 | KONISHI K, GOTO K, MURAKAMI H, et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes[J]. Applied Physics Letters, 2017, 110(10): 103506. |
20 | YANG J C, REN F, TADJER M, et al. 2 300 V reverse breakdown voltage Ga2O3 Schottky rectifiers[J]. ECS Journal of Solid State Science and Technology, 2018, 7(5): Q92-Q96. |
21 | HU Z Y, NOMOTO K, LI W S, et al. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1 kV[J]. IEEE Electron Device Letters, 2018, 39(6): 869-872. |
22 | ROY S, BHATTACHARYYA A, RANGA P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga’s figure of merit over 1 GW/cm2 [J]. IEEE Electron Device Letters, 2021, 42(8): 1140-1143. |
23 | QIN Y, XIAO M, PORTER M, et al. 10-kV Ga2O3 charge-balance Schottky rectifier operational at 200 ℃[J]. IEEE Electron Device Letters, 2023, 44(8): 1268-1271. |
24 | LV Y J, WANG Y G, FU X C, et al. Demonstration of β-Ga2O3 junction barrier Schottky diodes with a Baliga’s figure of merit of 0.85 GW/cm or a 5 A/700 V handling capabilities[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6179-6182. |
25 | YAN Q L, GONG H H, ZHANG J C, et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron,sp value of 0.93 GW/cm2 [J]. Applied Physics Letters, 2021, 118(12): 122102. |
26 | ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900. |
27 | YAN Q L, GONG H H, ZHOU H, et al. Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiO x termination[J]. Applied Physics Letters, 2022, 120(9): 092106. |
28 | WANG C L, YAN Q L, ZHANG C Q, et al. β-Ga₂O₃ lateral Schottky barrier diodes with > 10 kV breakdown voltage and anode engineering[J]. IEEE Electron Device Letters, 2023, 44(10): 1684-1687. |
29 | WONG M H, SASAKI K, KURAMATA A, et al. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V[J]. IEEE Electron Device Letters, 2016, 37(2): 212-215. |
30 | ZENG K, VAIDYA A, SINGISETTI U. 1.85 kV breakdown voltage in lateral field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388. |
31 | LV Y J, ZHOU X Y, LONG S B, et al. Source-field-plated β-Ga2O3 MOSFET with record power figure of merit of 50.4 MW/cm2 [J]. IEEE Electron Device Letters, 2019, 40(1): 83-86. |
32 | TETZNER K, BAHAT TREIDEL E, HILT O, et al. Lateral 1.8 kV β-Ga2O3 MOSFET with 155 MW/cm2 power figure of merit[J]. IEEE Electron Device Letters, 2019, 40(9): 1503-1506. |
33 | LV Y J, LIU H Y, ZHOU X Y, et al. Lateral β-Ga2O3 MOSFETs with high power figure of merit of 277 MW/cm2 [J]. IEEE Electron Device Letters, 2020, 41(4): 537-540. |
34 | FENG Z Q, CAI Y C, LI Z, et al. Design and fabrication of field-plated normally off β-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application[J]. Applied Physics Letters, 2020, 116(24): 243503. |
35 | KALARICKAL N K, XIA Z B, HUANG H L, et al. β-(Al0.18Ga0.82)2O3/Ga2O3 double heterojunction transistor with average field of 5.5 MV/cm[J]. IEEE Electron Device Letters, 2021, 42(6): 899-902. |
36 | WANG C L, GONG H H, LEI W N, et al. Demonstration of the p-NiO x /n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron,sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2 [J]. IEEE Electron Device Letters, 2021, 42(4): 485-488. |
37 | WANG C L, YAN Q L, SU C X, et al. Demonstration of the β-Ga₂O₃ MOS-JFETs with suppressed gate leakage current and large gate swing[J]. IEEE Electron Device Letters, 2023, 44(3): 380-383. |
38 | CHABAK K D, MCCANDLESS J P, MOSER N A, et al. Recessed-gate enhancement-mode β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(1): 67-70. |
39 | CHABAK K D, MOSER N, GREEN A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage[J]. Applied Physics Letters, 2016, 109(21): 213501. |
40 | LIU H Y, WANG Y G, LV Y J, et al. 10-kV lateral β-Ga₂O₃ MESFETs with B ion implanted planar isolation[J]. IEEE Electron Device Letters, 2023, 44(7): 1048-1051. |
41 | MOSER N, LIDDY K, ISLAM A, et al. Toward high voltage radio frequency devices in β-Ga2O3 [J]. Applied Physics Letters, 2020, 117(24): 242101. |
42 | ZHOU H. GaN MOS devices with atomic layer epitaxy dielectric and its next generation high power beta-Ga2O3 on insulators FETs[D]. West Lafayette: Purdue University, 2017. |
43 | TOMM Y, REICHE P, KLIMM D, et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 2000, 220(4): 510-514. |
44 | GALAZKA Z, UECKER R, IRMSCHER K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 2010, 45(12): 1229-1236. |
45 | GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. |
46 | GALAZKA Z, UECKER R, KLIMM D, et al. Scaling-up of bulk β-Ga2O3 single crystals by the czochralski method[J]. ECS Journal of Solid State Science and Technology, 2017, 6(2): Q3007-Q3011. |
47 | HIGASHIWAKI M, JESSEN G H. Guest editorial: the dawn of gallium oxide microelectronics[J]. Applied Physics Letters, 2018, 112(6): 060401. |
48 | FU B, MU W X, ZHANG J, et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method[J]. CrystEngComm, 2020, 22(30): 5060-5066. |
49 | FU B, JIAN G Z, MU W X, et al. Crystal growth and design of Sn-doped β-Ga2O3: morphology, defect and property studies of cylindrical crystal by EFG[J]. Journal of Alloys and Compounds, 2022, 896: 162830. |
50 | HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. |
51 | HOSHIKAWA K, KOBAYASHI T, MATSUKI Y, et al. 2-inch diameter (100) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air[J]. Journal of Crystal Growth, 2020, 545: 125724. |
52 | OHBA E, KOBAYASHI T, TAISHI T, et al. Growth of (100), (010) and (001) β-Ga2O3 single crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 556: 125990. |
53 | ZHANG J G, LI B, XIA C T, et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 2006, 67(12): 2448-2451. |
54 | ZHANG J G, LI B, XIA C T, et al. Single crystal β-Ga2O3∶ Cr grown by floating zone technique and its optical properties[J]. Science in China Series E: Technological Sciences, 2007, 50(1): 51-56. |
55 | NOH J, ALAJLOUNI S, TADJER M J, et al. High performance: Ga2O3 nano-membrane field effect transistors on a high thermal conductivity diamond substrate[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 914-918. |
56 | XU W H, YOU T G, MU F W, et al. Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate[J]. ACS Applied Electronic Materials, 2022, 4(1): 494-502. |
57 | LIN C H, HATTA N, KONISHI K, et al. Single-crystal-Ga2O3/polycrystalline-SiC bonded substrate with low thermal and electrical resistances at the heterointerface[J]. Applied Physics Letters, 2019, 114(3): 032103. |
58 | XU W H, ZHANG Y H, HAO Y, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[C]// 2019 IEEE International Electron Devices Meeting (IEDM). December 7-11, 2019. FranciscoSan, CA, USA. IEEE, 2019: 12. 5.1-12.5.4. |
59 | XU W H, YOU T G, WANG Y B, et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC[J]. Fundamental Research, 2021, 1(6): 691-696. |
60 | XIAO M, WANG B Y, LIU J C, et al. Packaged Ga2O3 Schottky rectifiers with over 60-a surge current capability[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8565-8569. |
61 | GREEN A J, CHABAK K D, BALDINI M, et al. β-Ga2O3 MOSFETs for radio frequency operation[J]. IEEE Electron Device Letters, 2017, 38(6): 790-793. |
62 | SINGH M, CASBON M A, UREN M J, et al. Pulsed large signal RF performance of field-plated Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2018, 39(10): 1572-1575. |
63 | CHABAK K D, WALKER D E, GREEN A J, et al. Sub-micron gallium oxide radio frequency field-effect transistors[C]// 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP). July 16-18, 2018, Ann Arbor, MI, USA. IEEE, 2018: 1-3. |
64 | XIA Z B, XUE H, JOISHI C, et al. β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz[J]. IEEE Electron Device Letters, 2019, 40(7): 1052-1055. |
65 | KAMIMURA T, NAKATA Y, HIGASHIWAKI M. Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors[J]. Applied Physics Letters, 2020, 117(25): 253501. |
66 | MOSER N A, ASEL T, LIDDY K J, et al. Pulsed power performance of β-Ga2O3 MOSFETs at L-band[J]. IEEE Electron Device Letters, 2020, 41(7): 989-992. |
67 | LV Y J, LIU H Y, WANG Y G, et al. Oxygen annealing impact on β-Ga2O3 MOSFETs: improved pinch-off characteristic and output power density[J]. Applied Physics Letters, 2020, 117(13): 133503. |
68 | YU X X, GONG H H, ZHOU J J, et al. RF performance enhancement in sub-μm scaled β-Ga2O3 tri-gate FinFETs[J]. Applied Physics Letters, 2022, 121(7): 072102. |
69 | YU X X, GONG H H, ZHOU J J, et al. High-voltage β-Ga2O3 RF MOSFETs with a shallowly-implanted 2DEG-like channel[J]. IEEE Electron Device Letters, 2023, 44(7): 1060-1063. |
70 | SAHA C N, VAIDYA A, BHUIYAN A F M A U, et al. Scaled β-Ga2O3 thin channel MOSFET with 5.4 MV/cm average breakdown field and near 50 GHz fMAX[J]. Applied Physics Letters, 2023, 122(18): 182106. |
71 | SAHA C N, VAIDYA A, NIPU N J, et al. Thin channel Ga2O3 MOSFET with 55 GHz fMAX and >100 V breakdown[J]. Applied Physics Letters, 2024, 125(6): 062101. |
72 | WANG X C, LU X L, HE Y L, et al. Quasi-2D high mobility channel E-mode β-Ga2O3 MOSFET with Johnson FOM of 7.56 THz·V[J]. Applied Physics Letters, 2024, 125(6): 063505. |
73 | YU X X, XU W H, WANG Y B, et al. Heterointegrated Ga2O3-on-SiC RF MOSFETs with fT/fmax of 47/51 GHz by ion-cutting process[J]. IEEE Electron Device Letters, 2023, 44(12): 1951-1954. |
74 | ZHOU M, ZHOU H, HUANG S, et al. 1.1 A/mm 1.1 A/mm ß-Ga2O3-on-SiC RF MOSFETs with 2.3 W/mm Pout and 30% PAE at 2 GHz and fT/fmax of 27.6/57 GHz[C]// 2023 International Electron Devices Meeting (IEDM). December 9-13, 2023, San Francisco, CA, USA. IEEE, 2023: 1-4. |
75 | ZHOU M, ZHOU H, MENGWEI S, et al. 71 GHz-fmax β-Ga2O3-on-SiC RF power MOSFETs with record Pout=3.1 W/mm and PAE=50.8% at 2 GHz, Pout=2.3 W/mm at 4 GHz, and low microwave noise figure[C]// 2024 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits). June 16-20, 2024, Honolulu, HI, USA. IEEE, 2024: 1-2. |
76 | ZHANG Y, NEAL A, XIA Z, et al. Demonstration of high mobility and quantum transport in modulation-doped β-(Al x Ga1- x )2O3/Ga2O3 heterostructures[J]. Applied Physics Letters, 2018, 112(17). |
77 | ZHANG Y W, XIA Z B, MCGLONE J, et al. Evaluation of low-temperature saturation velocity in β-(Al x Ga1- x )2O3/Ga2O3 modulation-doped field-effect transistors[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1574-1578. |
78 | JESSEN G H, FITCH R C, GILLESPIE J K, et al. Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices[J]. IEEE Transactions on Electron Devices, 2007, 54(10): 2589-2597. |
79 | SHINOHARA K, REGAN D, MILOSAVLJEVIC I, et al. Electron velocity enhancement in laterally scaled GaN DH-HEMTs with fT of 260 GHz[J]. IEEE Electron Device Letters, 2011, 32(8): 1074-1076. |
80 | VAIDYA A, SAHA C N, SINGISETTI U. Enhancement mode β-(Al x Ga1- x )2O3/Ga2O3 heterostructure FET (HFET) with high transconductance and cutoff frequency[J]. IEEE Electron Device Letters, 2021, 42(10): 1444-1447. |
81 | SAHA C N, VAIDYA A, SINGISETTI U. Temperature dependent pulsed IV and RF characterization of β-(Al x Ga1- x )2O3/Ga2O3 hetero-structure FET with ex situ passivation[J]. Applied Physics Letters, 2022, 120(17): 7. |
82 | OHTSUKI T, KAMIMURA T, HIGASHIWAKI M. Suppression of drain current leakage and short-channel effect in lateral Ga2O3 RF MOSFETs using (Al x Ga1- x )2O3 back-barrier[J]. IEEE Electron Device Letters, 2023, 44(11): 1829-1832. |
83 | DHEENAN A V, MCGLONE J F, KALARICKAL N K, et al. β-Ga2O3 MESFETs with insulating Mg-doped buffer grown by plasma-assisted molecular beam epitaxy[J]. Applied Physics Letters, 2022, 121(11): 113503. |
84 | ATMACA G, CHA H Y. Enhancement mode β-(Al0.19Ga0.81)2O3/Ga2O3 HFETs with superlattice back-barrier layer[J]. Micro and Nanostructures, 2024, 189: 207802. |
[1] | LI Wenjing, TIAN Junhong, LI Rensheng, LI Jianing, SUN Xiaowei. Improving Low-Frequency Sound Transmission Loss of Double-Layer Panels with a Perforated Sandwich Structure with Porous Lining [J]. Journal of Synthetic Crystals, 2025, 54(4): 581-588. |
[2] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
[3] | CHEN Junhong, HU Jianwen, WEI Zhongming. Research Progress of Gallium Oxide Micro/Nano Structure-Based Detectors [J]. Journal of Synthetic Crystals, 2025, 54(3): 491-510. |
[4] | WANG Junlan, LI Zaoyang, YANG Yao, QI Chongchong, LIU Lijun. Evaluation and Control of Crystallization Interface Deformation in the Growth of 6-Inch β-Ga2O3 Crystals by EFG Method [J]. Journal of Synthetic Crystals, 2025, 54(3): 396-406. |
[5] | YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models [J]. Journal of Synthetic Crystals, 2025, 54(3): 386-395. |
[6] | XIE Yinfei, HE Yang, LIU Weiye, XU Wenhui, YOU Tiangui, OU Xin, GUO Huaixin, SUN Huarui. Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices [J]. Journal of Synthetic Crystals, 2025, 54(2): 290-311. |
[7] | SHAO Shuangyao, YANG Shuo, FENG Huayu, JIA Zhitai, TAO Xutang. Research Progress of Gallium Oxide Avalanche Photodetectors [J]. Journal of Synthetic Crystals, 2025, 54(2): 276-289. |
[8] | LI Titao, LU Yaoping, CHEN Duanyang, QI Hongji, ZHANG Haizhong. Research on Gallium Oxide Homoepitaxy and Two-Dimensional Step-Flow Growth [J]. Journal of Synthetic Crystals, 2025, 54(2): 219-226. |
[9] | YU Xinxin, SHEN Rui, YU Han, ZHANG Zhao, SAI Qinglin, CHEN Duanyang, YANG Zhenni, QIAO Bing, ZHOU Likun, LI Zhonghui, DONG Xin, ZHANG Hongliang, QI Hongji, CHEN Tangsheng. β-Ga2O3 Field-Effect Transistors with Doped Epitaxial Layer Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(2): 312-318. |
[10] | LI Xiangyu, HAN Hua, WANG Yang, YAO Xiayuan. Design of THz Metamaterial Sensors Insensitive to Incidence Angle and Polarization [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 59-68. |
[11] | DOU Renqin, LIU Yao, LUO Jianqiao, WANG Xiaofei, LIU Wenpeng, ZHANG Qingli. Spectral Analysis and Thermal Properties of Nd∶GdYAG Laser Crystal [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1504-1511. |
[12] | WU Qiulin, FENG Xinkai, CHEN Huaixi, CHEN Jiaying, MA Cuiping, LIANG Wanguo. A 561 nm Fundamental Mode Laser Based on a Compact Nd∶YAG/PPMgLN Module [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1512-1518. |
[13] | HE Xiaomin, TANG Peizheng, LIU Ruoqi, SONG Xinyang, HU Jichao, SU Han. Simulation Study on Frequency Characteristics of AlN/β-Ga2O3 HEMT [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1361-1368. |
[14] | CHEN Jihu, LU Yani. Effect of Powder Reduction on the Thermoelectric Performance of Cu2Se [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1464-1470. |
[15] | LI Haoqing, SU Yu. Phase Field Study on Domain Structure Evolution of BaTiO3 Nano Single Crystal Thin Films under Applied Electric Field [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1136-1149. |
Viewed | ||||||
Full text 129
|
|
|||||
Abstract |
|
|||||