Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2060-2071.DOI: 10.16553/j.cnki.issn1000-985x.2025.0199
• Reviews • Previous Articles Next Articles
GAO Jiaqing1(
), QU Xiaoyong1, WU Xiang1, GUO Yonggang1, WU Weixiong2, ZHANG Bo1, WEI Kaifeng1
Received:2025-09-12
Online:2025-12-20
Published:2026-01-04
CLC Number:
GAO Jiaqing, QU Xiaoyong, WU Xiang, GUO Yonggang, WU Weixiong, ZHANG Bo, WEI Kaifeng. Research Progress on TBC Solar Cell Technology[J]. Journal of Synthetic Crystals, 2025, 54(12): 2060-2071.
| 参数 | 1.4 nm(量子隧穿) | 2.2 nm(针孔传输) |
|---|---|---|
| 电子势垒 | 3.1 eV | <1.0 eV |
| 空穴势垒 | 4.5 eV | <2.0 eV |
| 选择性(e-/h+) | >103 | >102 |
| 针孔密度 | <106 cm-2 | <108 cm-2 |
| 界面复合速率 | <10 cm/s | >100 cm/s |
Table 1 Comparison of transmission mechanisms and key performance parameters of TBC cell under different thicknesses of tunneling oxide layers
| 参数 | 1.4 nm(量子隧穿) | 2.2 nm(针孔传输) |
|---|---|---|
| 电子势垒 | 3.1 eV | <1.0 eV |
| 空穴势垒 | 4.5 eV | <2.0 eV |
| 选择性(e-/h+) | >103 | >102 |
| 针孔密度 | <106 cm-2 | <108 cm-2 |
| 界面复合速率 | <10 cm/s | >100 cm/s |
| Classification | PCE/% | Area/cm2 | Voc/mV | Jsc/(mA·cm-2) | Isc/mA | FF/% | Test center(date) | Description | 单位中文备注 |
|---|---|---|---|---|---|---|---|---|---|
| Silicon (cell) | 27.81 ±0.47 | 133.63 | 744.9 | 42.64 | 5 698 | 87.55 | ISFH(01/2025) | Longi, n-HTBC, cell. | 隆基绿能 |
| Silicon (cell) | 27.52 ±0.47 | 166.08 | 745.5 | 42.41 | 7 044 | 87.05 | ISFH(12/2024) | Longi,n-HBC, cell. | 隆基绿能 |
| Silicon (cell) | 27.20±0.46 | 311.3 | 741.5 | 42.73 | 13 303 | 85.85 | ISFH(04/2025) | Jinko,n-TBC, cell. | 晶科能源 |
| Silicon (cell) | 27.10±0.80 | 295.6 | 743.1 | 42.08 | 12 440 | 86.60 | JET(10/2024) | Longi,n-TBC,cell. | 隆基绿能 |
| Silicon (cell) | 27.03±0.46 | 350.0 | 744.7 | 42.32 | 14 813 | 85.77 | ISFH(09/2024) | Longi, n-TBC,cell. | 隆基绿能 |
| Silicon (cell) | 26.67±0.40 | 313.2 | 743.7 | 42.07 | 13 174 | 85.23 | ISFH(04/2025) | Jinko, Si n-TOPCon bificial, cell. | 晶科能源 |
| Silicon (cell) | 25.90±0.44 | 350.5 | 738.3 | 41.70 | 14 617 | 84.14 | ISFH(10/2024) | Trina, Sin-TOPCon bificial, cell. | 天合光能 |
Table 2 Record of the highest efficiency of solar cells in 2025[51]
| Classification | PCE/% | Area/cm2 | Voc/mV | Jsc/(mA·cm-2) | Isc/mA | FF/% | Test center(date) | Description | 单位中文备注 |
|---|---|---|---|---|---|---|---|---|---|
| Silicon (cell) | 27.81 ±0.47 | 133.63 | 744.9 | 42.64 | 5 698 | 87.55 | ISFH(01/2025) | Longi, n-HTBC, cell. | 隆基绿能 |
| Silicon (cell) | 27.52 ±0.47 | 166.08 | 745.5 | 42.41 | 7 044 | 87.05 | ISFH(12/2024) | Longi,n-HBC, cell. | 隆基绿能 |
| Silicon (cell) | 27.20±0.46 | 311.3 | 741.5 | 42.73 | 13 303 | 85.85 | ISFH(04/2025) | Jinko,n-TBC, cell. | 晶科能源 |
| Silicon (cell) | 27.10±0.80 | 295.6 | 743.1 | 42.08 | 12 440 | 86.60 | JET(10/2024) | Longi,n-TBC,cell. | 隆基绿能 |
| Silicon (cell) | 27.03±0.46 | 350.0 | 744.7 | 42.32 | 14 813 | 85.77 | ISFH(09/2024) | Longi, n-TBC,cell. | 隆基绿能 |
| Silicon (cell) | 26.67±0.40 | 313.2 | 743.7 | 42.07 | 13 174 | 85.23 | ISFH(04/2025) | Jinko, Si n-TOPCon bificial, cell. | 晶科能源 |
| Silicon (cell) | 25.90±0.44 | 350.5 | 738.3 | 41.70 | 14 617 | 84.14 | ISFH(10/2024) | Trina, Sin-TOPCon bificial, cell. | 天合光能 |
| [1] | MUKHERJEE A, BENETT J, ANYIGOR K T, et al. Solar roads—a new potential renewable energy for Great Britain[J]. Environmental Technology, 2024, 45(27): 5956-5965. |
| [2] | GREEN M A, DUNLOP E D, YOSHITA M, et al. Solar cell efficiency tables (version 62)[J]. Progress in Photovoltaics: Research and Applications, 2023, 31(7): 651-663. |
| [3] | HAASE F, HOLLEMANN C, WEHMEIER N, et al. Design of large poly-Si on oxide interdigitated back contact (POLO IBC) silicon solar cells with local Al-p+ contacts in the constraints of measurement and module integration[J]. Solar RRL, 2022, 6(11): 2200583. |
| [4] | GAO J Q, QU X Y, GUO Y G, et al. Over 700 mV IBC solar cell by optimizing front surface field passivation[J]. IEEE Journal of Photovoltaics, 2023, 13(1): 56-60. |
| [5] | FELDMANN F, HAMEIRI Z, RICHTER A, et al. Tunnel oxide passivated contacts for high-efficiency silicon solar cells[J]. Energy Environ Sci, 2020, 13(5): 1407-1438. |
| [6] | HOLLEMANN C, HAASE F, SCHÄFER S, et al. 26.1%-efficient POLO-IBC cells: quantification of electrical and optical loss mechanisms[J]. Progress in Photovoltaics: Research and Applications, 2019, 27(11): 950-958. |
| [7] | SWANSON R M. Back side contact solar cell with doped polysilicon regions: US7633006[P]. 2009-12-15. |
| [8] | RICHTER A, BENICK J, FELDMANN F, et al. N-type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar Energy Materials and Solar Cells, 2017, 173: 96-105. |
| [9] | CAO K, YANG Z H, WANG M, et al. Physical mechanisms and design strategies for high-efficiency back contact tunnel oxide passivating contact solar cells[J]. Solar Energy Materials and Solar Cells, 2025, 289: 113656. |
| [10] | TONG H B, TAN S, ZHANG Y S, et al. Total-area world-record efficiency of 27.03% for 350.0 cm2 commercial-sized single-junction silicon solar cells[J]. Nature Communications, 2025, 16: 5920. |
| [11] | FELDMANN F, BIVOUR M, REICHEL C, et al. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar Energy Materials and Solar Cells, 2014, 120: 270-274. |
| [12] | SCHMIDT J, PEIBST R, BRENDEL R. Surface passivation of crystalline silicon solar cells: present and future[J]. Solar Energy Materials and Solar Cells, 2018, 187: 39-54. |
| [13] | 宋志成, 张博, 张春福, 等. p型TBC电池发射极制备工艺[J].人工晶体学报, 2025, 54(5):857-863. |
| SONG Z C, ZHANG B, ZHANG C F, et al. Preparation process of emitter for p-type TBC cells[J]. Journal of Synthetic Crystals, 2025, 54(5): 857-863 (in Chinese). | |
| [14] | CHU M M, KHOKHAR M Q, HAN S, et al. Tunnel oxide thickness-dependent dominant carrier transport in crystalline silicon solar cells[J]. Optical Materials, 2024, 154: 115711. |
| [15] | 徐嘉玉, 胡波, 黄仕华. 缺陷辅助隧穿对TOPCon太阳能电池性能的影响[J].应用物理, 2024, 14(5):328-338. |
| XU J Y, HU B, HUANG S H. The effect of trap-assisted tunneling on the performance of TOPCon solar cells[J]. Applied Physics, 2024, 14(5):328-338 (in Chinese). | |
| [16] | 徐嘉玉, 胡波, 黄仕华. 缺陷辅助隧穿对POLO结载流子输运的影响[J].光学学报, 2024, 44(19): 1923003. |
| XU J Y, HU B, HUANG S H. Effect of trap-assisted tunneling on carrier transport in silicon oxide/polycrystalline silicon[J].Acta Optica Sinica, 2024, 44(19): 1923003 (in Chinese). | |
| [17] | GREEN M A. Solar cell fill factors: general graph and empirical expressions[J]. Solid-State Electronics, 1981, 24(8): 788-789. |
| [18] | JAIN A, KAPOOR A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function[J]. Solar Energy Materials and Solar Cells, 2004, 81(2): 269-277. |
| [19] | 彭小静, 徐 林, 刘 锋, 等. 光谱及太阳电池各参数与填充因子之关系[J]. 太阳能学报, 2009, 30(7): 878-882. |
| PENG X J, XU L, LIU F, et al. Study the effects of spectrum and solar cell parameter on fill factor[J]. Acta Energiae Solaris Sinica, 2009, 30(7): 878-882 (in Chinese). | |
| [20] | RICHTER A, HERMLE M, GLUNZ S W. Reassessment of the limiting efficiency for crystalline silicon solar cells[J]. IEEE Journal of Photovoltaics, 2013, 3(4): 1184-1191. |
| [21] | PEIBST R, RIENÄCKER M, LARIONOVA Y, et al. Towards 28%-efficient Si single-junction solar cells with better passivating POLO junctions and photonic crystals[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111560. |
| [22] | KRUSE C N, SCHÄFER S, HAASE F, et al. Simulation-based roadmap for the integration of poly-silicon on oxide contacts into screen-printed crystalline silicon solar cells[J]. Scientific Reports, 2021, 11(1): 996. |
| [23] | SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p‐n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. |
| [24] | MARTÍ A, ARAÚJO G L. Limiting efficiencies for photovoltaic energy conversion in multigap systems[J]. Solar Energy Materials and Solar Cells, 1996, 43(2): 203-222. |
| [25] | VAN KOPPEN C W J. Endoreversible thermodynamics of solar energy conversion[J]. Solar Energy, 1993, 51(2): 165. |
| [26] | RATNER M. The physics of solar cells; third generation photovoltaics: advanced solar energy conversion[J]. Physics Today, 2004, 57(12): 71-72. |
| [27] | HOLLEMANN C, HAASE F, RIENÄCKER M, et al. Separating the two polarities of the POLO contacts of an 26.1%-efficient IBC solar cell[J]. Scientific Reports, 2020, 10(1): 658. |
| [28] | WU H, YE F, YANG M, et al. Silicon heterojunction back-contact solar cells by laser patterning[J]. Nature, 2024, 635(8039): 604-609. |
| [29] | 浙江爱旭太阳能科技有限公司. 一种太阳能电池及其掺杂区结构, 电池组件及光伏系统: CN113284967B[P].2021-10-08. |
| Zhejiang Aixu Solar Energy Technology Co., Ltd. A solar cell and its doped region structure, battery module and photovoltaic system: CN113284967B[P].2021-10-08 (in Chinese). | |
| [30] | 高嘉庆, 屈小勇, 吴 翔, 等. p型TOPCon结构的隧穿氧化和钝化工艺研究[J]. 人工晶体学报, 2025, 54(1): 133-138. |
| GAO J Q, QU X Y, WU X, et al. Tunneling oxidation and passivation process of p-type TOPCon structure[J]. Journal of Synthetic Crystals, 2025, 54(1): 133-138 (in Chinese). | |
| [31] | 黄玉清. 基于PECVD原位氧化法制备超薄氧化硅隧穿层及在高效TOPCon太阳电池中的应用[D]. 金华: 浙江师范大学, 2019. |
| HUANG Y Q. Preparation of ultra-thin silicon oxide tunneling layer based on PECVD in-situ oxidation method and its application in high-efficiency TOPCon solar cells[D]. Jinhua: Zhejiang Normal University, 2019 (in Chinese). | |
| [32] | RÖMER U, PEIBST R, OHRDES T, et al. Ion implantation for poly-Si passivated back-junction back-contacted solar cells[J]. IEEE Journal of Photovoltaics, 2015, 5(2): 507-514. |
| [33] | NEMETH B, YOUNG D L, PAGE M R, et al. Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells[J]. Journal of Materials Research, 2016, 31(6): 671-681. |
| [34] | ZHANG T J, QU X Y, GUO Y G, et al. The passivation characteristics of poly-Si/SiO x stack for high-efficiency silicon solar cells[J]. Silicon, 2023, 15(4): 1659-1668. |
| [35] | WAN W C, WANG M Q, ZHANG X P, et al. Enhancing passivation and reducing absorption losses in TOPCon solar cells via poly-Si finger structure[J]. Solar Energy Materials and Solar Cells, 2025, 286: 113600. |
| [36] | 董 鹏. 高效N型背接触太阳电池工艺研究[D]. 西安: 西安电子科技大学, 2018. |
| DONG P. Study on technology of high efficiency n-type back contact solar cell[D]. Xi’an: Xidian University, 2018 (in Chinese). | |
| [37] | ENGELHART P, GRISCHKE R, EIDELLOTH S, et al. Laser processing for back-contacted silicon solar cells[C]//ICALEO 2006: 25th International Congress on Laser Materials Processing and Laser Microfabrication. October 30-November 2, 2006. Scottsdale, Arizona, USA. Laser Institute of AmericaLIA, 2006: M703. |
| [38] | DAHLINGER M, CARSTENS K, HOFFMANN E, et al. 23.2% laser processed back contact solar cell: fabrication, characterization and modeling[J]. Progress in Photovoltaics: Research and Applications, 2017, 25(2): 192-200. |
| [39] | RENTSCH J, WANKA H, PERNAU T, et al. Advanced anti-reflection and passivation layer systems produced by high-power plasma in the new manz PECVD system[C]//2012.DOI:10.4229/27thEUPVSEC2012-2CV.6.52 . |
| [40] | HOFMANN M, KOHN N, SCHWARZ F, et al. High-power-plasma PECVD of SiNx and Al2O3 for industrial solar cell manufacturing[J]. 28th European PV Solar Energy Conference and Exhibition, 2013. DOI:10.4229/28THEUPVSEC2013-2BV.1.45 . |
| [41] | 吴 翔, 高嘉庆, 郭永刚, 等. n型IBC太阳电池金属化工艺研究[J]. 微纳电子技术, 2022, 59(12): 1388-1394. |
| WU X, GAO J Q, GUO Y G, et al. Research on metallization process of n-type IBC solar cells[J]. Micronanoelectronic Technology, 2022, 59(12): 1388-1394 (in Chinese). | |
| [42] | 谢志琛. 基于玻璃模板的晶硅太阳能电池正面电极激光转印技术研究[D]. 广州: 华南理工大学, 2024. |
| XIE Z C. Research on laser transfer printing technology for front electrode of crystalline silicon solar cells based on glass template [D]. Guangzhou: South China University of Technology, 2024 (in Chinese). | |
| [43] | ARAKI T, MANDAMPARAMBIL R, VAN BRAGT D M P, et al. Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques[J]. Nanotechnology, 2016, 27(45): 45LT02. |
| [44] | SCHWARTZ R J, LAMMERT M D. Silicon solar cells for high concentration applications[C]//1975 International Electron Devices Meeting. December 1-3, 1975, Washington, DC, USA. IEEE, 1975: 350-352. |
| [45] | LAMMERT M D, SCHWARTZ R J. The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight[J]. IEEE Transactions on Electron Devices, 1977, 24(4): 337-342. |
| [46] | VERLINDEN P J, SWANSON R M, CRANE R A. 7000 high-eficiency cells for a dream[J]. Progress in Photovoltaics: Research and Applications, 1994, 2(2): 143-152. |
| [47] | SMITH D D, REICH G, BALDRIAS M, et al. Silicon solar cells with total area efficiency above 25%[C]//2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). June 5-10, 2016, Portland, OR, USA. IEEE, 2016: 3351-3355. |
| [48] | HAASE F, HOLLEMANN C, SCHÄFER S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 184-193. |
| [49] | XF.0509.天合光能IBC电池效率超过24%[J].军民两用技术与产品, 2017(11):1.DOI:CNKI:SUN:HTJM.0.2017-11-078 . |
| XF.0509. Tianhe Solar IBC battery efficiency exceeds 24%[J]. Dual Use Technologies and Products, 2017 (11): 1. DOI: CNKI: SUN: HTJM. 0-11-078 (in Chinese). | |
| [50] | 郭永刚, 高嘉庆, 屈小勇, 等. n型叉指背接触太阳电池背面结构参数研究[J]. 微纳电子技术, 2020, 57(11): 865-870. |
| GUO Y G, GAO J Q, QU X Y, et al. Research of the back side structure parameters of the n-type interdigitated back contact solar cell[J]. Micronanoelectronic Technology, 2020, 57(11): 865-870 (in Chinese). | |
| [51] | 中国可再生能源学会光伏专业委员会. CPVS 2025太阳电池最高效率表[EB/OL].2025-09-02. . |
| China Renewable Energy Society Photovoltaic Professional Committee. CPVS 2025 solar cell highest efficiency table[EB/OL]. 2025-09-02, (in Chinese). | |
| [52] | KOPECEK R, LIBAL J, LOSSEN J, et al. ZEBRA technology: low cost bifacial IBC solar cells in mass production with efficiency exceeding 23.5%[C]//2020 47th IEEE Photovoltaic Specialists Conference (PVSC). June 15-August 21, 2020, Calgary, AB, Canada. IEEE, 2020: 1008-1012. |
| [53] | 黄嘉斌, 赵增超, 李 明, 等. 管式PECVD制备原位掺杂多晶硅的性能研究[J]. 太阳能学报, 2024, 45(6): 334-340. |
| HUANG J B, ZHAO Z C, LI M, et al. Study on performance of in situ doped polysilicon prepared by tube pecvd[J]. Acta Energiae Solaris Sinica, 2024, 45(6): 334-340 (in Chinese). | |
| [54] | OU Y L, DU H J, LIN N, et al. Boron-doped polysilicon passivating contacts achieving a single-sided J0 of 4.0 fA/cm2 through a two-step oxidation process[J]. Progress in Photovoltaics: Research and Applications, 2025, 33(4): 531-540. |
| [55] | KOPECEK R, BUCHHOLZ F, MIHAILETCHI V D, et al. IBC technology targeting fast and effective silver reduction applying advanced screen: printing[C]//2023 IEEE 50th Photovoltaic Specialists Conference (PVSC). June 11-16, 2023, San Juan, PR, USA. IEEE, 2023: 1. |
| [56] | 浙江爱旭太阳能科技有限公司.太阳能电池的制备方法及太阳能电池组件,发电系统: CN114335257B[P].2022-08-19. |
| Zhejiang Aixu Solar Energy Technology Co., Ltd. Preparation method of solar cells and solar cell modules, power generation system: CN114335257B[P]. 2022-08-19 (in Chinese). | |
| [57] | A·F·卡罗尔, K·W·杭, B·J·劳克林, 等. 包含铅氧化物和碲氧化物的厚膜糊料及其在半导体装置制造中的用途: CN103038186B[P].2018-09-11. |
| CARROLL A F, HANG K W, LAUGHLIN B J, et al. Thick film paste containing lead oxide and tellurium oxide and its use in semiconductor device manufacturing: CN103038186B[P]. 2018-09-11 (in Chinese). |
| [1] | CHU Fan, ZHAO Chunfeng. Design of Two-Dimensional Layered Phononic Crystal Structures Based on LightGBM and Genetic Algorithm [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(10): 1720-1728. |
| [2] | SUN Zegang, GE Zihao, SHI Rongqiu, FEI Tianwen. Optimization Design of Key Structure of Polycrystalline Silicon Reduction Furnace Based on Fluent [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(11): 1952-1960. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS