Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2072-2082.DOI: 10.16553/j.cnki.issn1000-985x.2025.0151
• Research Articles • Previous Articles Next Articles
LU Jiazheng1(
), HU Runguang2, ZHENG Lili1(
), ZHANG Hui3, HU Dongli2
Received:2025-07-16
Online:2025-12-20
Published:2026-01-04
CLC Number:
LU Jiazheng, HU Runguang, ZHENG Lili, ZHANG Hui, HU Dongli. Defect Control of Polytype Inclusion in Large-Diameter SiC Single Crystal Grown by PVT Method[J]. Journal of Synthetic Crystals, 2025, 54(12): 2072-2082.
| No. | Heating power | Growth duration/h | Average growth rate/(mm·h-1) | 6H-SiC polytype |
|---|---|---|---|---|
| 1 | P0 | 60 | 0.145 | None |
| 2 | 101.4%P0 | 110 | 0.158 | None |
| 3 | 102.8%P0 | 110 | 0.177 | Minor area |
| 4 | 106.8%P0 | 110 | 0.269 | Extensive area |
Table 1 Heating power, crystal growth duration, average crystal growth rate and occurrence of 6H-SiC polytype inclusions of experiments
| No. | Heating power | Growth duration/h | Average growth rate/(mm·h-1) | 6H-SiC polytype |
|---|---|---|---|---|
| 1 | P0 | 60 | 0.145 | None |
| 2 | 101.4%P0 | 110 | 0.158 | None |
| 3 | 102.8%P0 | 110 | 0.177 | Minor area |
| 4 | 106.8%P0 | 110 | 0.269 | Extensive area |
Fig.2 Experimental morphology of crystal surfaces and 6H-SiC polytype inclusions: (a) P0, 6H-SiC polytype-free; (b) 101.4% P0, 6H-SiC polytype-free; (c) 102.8% P0, 6H-SiC polytype present in an minor area on the shallow surface layer (red box); (d) 106.8% P0, 6H-SiC polytype inclusion developed throughout the crystal thickness in an extensive area (red circle)
Fig.4 Distribution of Joule heating system. (a) Distribution of Joule heating in the entire system and the susceptor; (b) axial distribution of Joule heating on the susceptor
Fig.5 Distributions of temperature (left) and gas flow velocity (right) at initial and final stages in crucible, along with the shape of crystal growth interface. (a) P0/0 h; (b) 101.4%P0/0 h; (c) 102.8%P0/0 h; (d) 106.8%P0/0 h; (e) P0/60 h; (f) 101.4%P0/110 h; (g) 102.8%P0/110 h; (h) 106.8%P0/110 h
Fig.7 Evolution of 4H-SiC 2D nucleation energy (a), 6H-SiC 2D nucleation energy (b), and the difference between them (c) over time at the crystal growth interface edge
Fig.8 Temperature-carbon supersaturation ratio (T-Seff) process map. Black dots indicate no 6H-SiC polytype inclusion; red dots indicate presence of 6H-SiC polytype inclusion. The red dashed line is the boundary for the 4H-SiC to 6H-SiC transition; the contour lines represent the 2D nucleation energy difference between 6H-SiC and 4H-SiC (unit: eV)
Fig.9 Temperature-crystal growth rate (T-Gcryst) process map. Black dots indicate no 6H-SiC polytype inclusion; red dots indicate presence of 6H-SiC polytype inclusion. The red dashed line is the boundary for the 4H-SiC to 6H-SiC transition; the contour lines represent the 2D nucleation energy difference between 6H-SiC and 4H-SiC (units: eV)
Fig.11 Relationship between upper/lower heater power ratio and 6H-SiC polytype inclusion defects. (a) Temperature-carbon supersaturation ratio process map; (b) temperature-crystal growth rate process map
Fig.12 Relationship between Ar pressure and 6H-SiC polytype inclusion defects. (a) Temperature-carbon supersaturation ratio process map; (b) temperature-crystal growth rate process map
| [1] | RAMSDELL L S. Studies on silicon carbide[J]. American Mineralogist, 1954, 32: 64-82. |
| [2] | BURTON W K, CABRERA N, FRANK F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1951, 243(866): 299-358. |
| [3] | TAIROV Y M, TSVETKOV V F. Progress in controlling the growth of polytypic crystals[J]. Progress in Crystal Growth and Characterization, 1983, 7(1/2/3/4): 111-162. |
| [4] | FISSEL A. Thermodynamic considerations of the epitaxial growth of SiC polytypes[J]. Journal of Crystal Growth, 2000, 212(3/4): 438-450. |
| [5] | TSAVDARIS N, ARIYAWONG K, SARIGIANNIDOU E, et al. Interface shape: a possible cause of polytypes de-stabilization during seeded sublimation growth of 15R-SiC[J]. Materials Science Forum, 2014, 806: 61-64. |
| [6] | TSAVDARIS N, ARIYAWONG K, DEDULLE J M, et al. Macroscopic approach to the nucleation and propagation of foreign polytype inclusions during seeded sublimation growth of silicon carbide[J]. Crystal Growth & Design, 2015, 15(1): 156-163. |
| [7] | 王 宇, 顾 鹏, 付 君, 等. PVT法生长4H-SiC晶体及多型夹杂缺陷研究进展[J]. 人工晶体学报, 2022, 51(12): 2137-2152. |
| WANG Y, GU P, FU J, et al. Research progress on the growth of 4H-SiC crystal by PVT method and the defect of polytype inclusions[J]. Journal of Synthetic Crystals, 2022, 51(12): 2137-2152 (in Chinese). | |
| [8] | SHIRAMOMO T, GAO B, MERCIER F, et al. Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2012, 352(1): 177-180. |
| [9] | KAKIMOTO K, GAO B, SHIRAMOMO T, et al. Thermodynamic analysis of SiC polytype growth by physical vapor transport method[J]. Journal of Crystal Growth, 2011, 324(1): 78-81. |
| [10] | SHIRAMOMO T, GAO B, MERCIER F, et al. Study of the effect of doped impurities on polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2014, 385: 95-99. |
| [11] | XU B J, CUI H, CHEN P Y, et al. Effects of the thermal field on the diameter enlargement of 200 mm SiC by PVT method[J]. CrystEngComm, 2025, 27(9): 1315-1324. |
| [12] | FU Z X, YANG X L, CHEN X F, et al. Distribution of extrinsic Frank stacking faults in 4H-SiC single crystals: relationships with temperature field and polytype inclusions[J]. Vacuum, 2025, 241: 114680. |
| [13] | CHEN Q S, ZHANG H, PRASAD V, et al. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals[J]. Journal of Heat Transfer, 2001, 123(6): 1098-1109. |
| [14] | CHEN Q S, ZHANG H, MA R H, et al. Modeling of transport processes and kinetics of silicon carbide bulk growth[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 299-306. |
| [15] | LILOV S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation[J]. Materials Science and Engineering: B, 1993, 21(1): 65-69. |
| [16] | MARKOV I, KAISCHEW R. Influence of the supersaturation on the mode of thin film growth[J]. Kristall und Technik, 1976, 11(7): 685-697. |
| [17] | MA R H, CHEN Q S, ZHANG H, et al. Modeling of silicon carbide crystal growth by physical vapor transport method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 352-359. |
| [18] | 卢嘉铮, 张 辉, 郑丽丽, 等. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报, 2022, 51(3): 371-384. |
| LU J Z, ZHANG H, ZHENG L L, et al. Thermal field design and optimization of resistance heated large-size SiC crystal growth system[J]. Journal of Synthetic Crystals, 2022, 51(3): 371-384 (in Chinese). | |
| [19] | 卢嘉铮, 张 辉, 郑丽丽, 等. 大尺寸碳化硅晶体生长热-质输运过程建模及数值仿真[J]. 人工晶体学报, 2023, 52(4): 550-561. |
| LU J Z, ZHANG H, ZHENG L L, et al. Modeling and numerical simulation of heat-mass transport process for large-size silicon carbide crystal growth[J]. Journal of Synthetic Crystals, 2023, 52(4): 550-561 (in Chinese). | |
| [20] | CHENG T B, FANG D N, YANG Y Z. A temperature-dependent surface free energy model for solid single crystals[J]. Applied Surface Science, 2017, 393: 364-368. |
| [21] | ARIYAWONG K. Process modeling for the growth of SiC using PVT and TSSG methods[D]. Grenoble: Uni-versité Grenoble Alpes, 2015. |
| [22] | WELLMANN P J, BICKERMANN M, HOFMANN D, et al. In situ visualization and analysis of silicon carbide physical vapor transport growth using digital X-ray imaging[J]. Journal of Crystal Growth, 2000, 216(1/2/3/4): 263-272. |
| [23] | ARZIG M, KÜNECKE U, SALAMON M, et al. Influence of the growth conditions on the formation of macro-steps on the growth interface of SiC-crystals[J]. Journal of Crystal Growth, 2021, 576: 126361. |
| [1] | LI Xiaochuan, MA Sanbao, ZHOU Fengzi, REN Yongpeng, MA Wuxiang, MEI Haotian. Numerical Simulation for Pipeline Problem of Highly Sb-Doped Czochralski Silicon Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(9): 1534-1546. |
| [2] | LI Jiancheng, ZHONG Zeqi, WANG Junlei, LI Zaoyang, WEN Yong, WANG Lei, LIU Lijun. Control of Oxygen Content During the Growth of Single Crystal Silicon by Czochralski Method [J]. Journal of Synthetic Crystals, 2025, 54(9): 1525-1533. |
| [3] | LIU Shouting, WEN Xujie, HAN Wenbin, LI Chenzhe, SONG Wei, CUI Jiangang, SONG Song, LI Yong, SUN Dehui, LIU Hong. Growth of 2~3 Inch Magnesium-Doped Near-Stoichiometric Ratio Lithium Tantalate Crystals [J]. Journal of Synthetic Crystals, 2025, 54(8): 1396-1402. |
| [4] | WANG Bin, WANG Xiaoli, HOU Yueyun, LIU Jiao, LIU Shan. Growth Technology of Ultraviolet Calcium Fluoride Crystals [J]. Journal of Synthetic Crystals, 2025, 54(8): 1369-1378. |
| [5] | XU Zhuangjie, BA Yanshuang, XI He, BAI Fuhui, CHEN Dazheng, ZHU Weidong, ZHANG Chunfu. Growth and X-Ray Detection Properties of High-Quality Perovskite Single Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1229-1237. |
| [6] | MA Wenjun, ZHANG Guodong, SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang. Recent Advances in Halide Perovskite Semiconductor Single Crystals for Radiation Detection Applications [J]. Journal of Synthetic Crystals, 2025, 54(7): 1091-1099. |
| [7] | ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207. |
| [8] | CHEN Zihang, WANG Xiaodan, LIU Jian, LIU Peng, XU Xiaodong, XU Jun. Growth and Spectral Properties of Er∶CNGG Crystals by the Micro-Pulling-Down Method [J]. Journal of Synthetic Crystals, 2025, 54(6): 935-941. |
| [9] | QI Chao, LI Dengnian, LI Zaoyang, YANG Yao, ZHONG Zeqi, LIU Lijun. Power Consumption and Heat Transfer Paths in Czochralski Silicon Crystal Growth under the Influence of Heat Shield [J]. Journal of Synthetic Crystals, 2025, 54(6): 949-959. |
| [10] | ZHU Litao, LIU Lei, YUAN Shuai, ZHOU Shenglang, ZHANG Huali, WANG Chen, GAO Yu, CAO Jianwei, YU Xuegong, YANG Deren. Effect of Cable Diameter on Growth Stability of Large-Size Czochralski Silicon Crystals [J]. Journal of Synthetic Crystals, 2025, 54(6): 942-948. |
| [11] | YANG Wenwen, LU Wei, XIE Hui, LIU Gang, LYU Xinyu, BAI Yihan, LI Chenhui, PAN Jiaoqing, ZHAO Youwen, SHEN Guiying. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(5): 784-792. |
| [12] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
| [13] | YU Feng, ZHENG Qiang, QI Tingyu, ZHANG Yubai, MA Yali, JIA Songyan, LI Xue. Controlled Preparation of High Aspect Ratio Calcium Carbonate Whiskers from Dolomite Refined Solution [J]. Journal of Synthetic Crystals, 2025, 54(5): 898-908. |
| [14] | JIANG Xianlong, ZHENG Weitao, ZHU Yunzhong. In-Situ Diagnosis of Lithium Niobate Crystal Growth Interface Flipping Phenomenon [J]. Journal of Synthetic Crystals, 2025, 54(4): 533-542. |
| [15] | QI Zhanguo, WANG Shouzhi, LI Qiubo, WANG Zhongxin, SHAO Huihui, LIU Lei, WANG Guodong, SUN Defu, YU Huidong, JIANG Kaize, ZHANG Shuang, CHEN Xiufang, XU Xiangang, ZHANG Lei. Preparation of 4-Inch High-Quality GaN Single Crystal Substrates [J]. Journal of Synthetic Crystals, 2025, 54(4): 717-720. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS