Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (4): 569-580.DOI: 10.16553/j.cnki.issn1000-985x.2024.0247
• Research Articles • Previous Articles Next Articles
CHEN Danying, YAN Long, LUO Jiahao, ZHENG Zhenyu, JIANG Yong, ZHANG Kai, ZHOU Ning, LIAO Chenzi, GUO Shiping
Received:2024-10-15
Online:2025-04-15
Published:2025-04-28
CLC Number:
CHEN Danying, YAN Long, LUO Jiahao, ZHENG Zhenyu, JIANG Yong, ZHANG Kai, ZHOU Ning, LIAO Chenzi, GUO Shiping. Effect of C/Si Ratio on SiC Fast Homoepitaxial Growth in Vertical Hot-Wall CVD Reactor[J]. Journal of Synthetic Crystals, 2025, 54(4): 569-580.
| [1] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187: 66-77. [2] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [3] TSUCHIDA H, KAMATA I, MIYAZAWA T, et al. Recent advances in 4H-SiC epitaxy for high-voltage power devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 2-12. [4] KURODA N, SHIBAHARA K, YOO W, et al. Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts of the 1987 Conference on Solid State Devices and Materials. August 25-27, 1987. Nippon Toshi Center, Tokyo, Japan. The Japan Society of Applied Physics, 1987. [5] UEDA T, NISHINO H, MATSUNAMI H. Crystal growth of SiC by step-controlled epitaxy[J]. Journal of Crystal Growth, 1990, 104(3): 695-700. [6] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Online Proceedings Library, 1987, 97(1): 233-245. [7] KONG H S, GLASS J T, DAVIS R F. Chemical vapor deposition and characterization of 6H-SiC thin films on off-axis 6H-SiC substrates[J]. Journal of Applied Physics, 1988, 64(5): 2672-2679. [8] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [9] RUPP R, MAKAROV Y N, BEHNER H, et al. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation[J]. Physica Status Solidi B Basic Research, 1997, 202(1): 281-304. [10] KIMOTO T, COOPER J A. Fundamentals of Silicon Carbide Technology[M]. Singapore: Wiley, 2014. [11] MYERS-WARD R L, KORDINA O, SHISHKIN Z, et al. Increased growth rate in a SiC CVD reactor using HCl as a growth additive[J]. Materials Science Forum, 2005, 483/484/485: 73-76. [12] LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515. [13] LA VIA F, IZZO G, MAUCERI M, et al. 4H-SiC epitaxial layer growth by trichlorosilane (TCS)[J]. Journal of Crystal Growth, 2008, 311(1): 107-113. [14] PEDERSEN H, LEONE S, HENRY A, et al. Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS)[J]. Journal of Crystal Growth, 2007, 307(2): 334-340. [15] YAZDANFAR M, IVANOV I G, PEDERSEN H, et al. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates[J]. Journal of Applied Physics, 2013, 113(22): 223502. [16] YAZDANFAR M, DANIELSSON Ö, KORDINA O, et al. Finding the optimum chloride-based chemistry for chemical vapor deposition of SiC[J]. ECS Journal of Solid State Science and Technology, 2014, 3(10): P320-P323. [17] CHOWDHURY I, CHANDRASEKHAR M V S, KLEIN P B, et al. High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor[J]. Journal of Crystal Growth, 2011, 316(1): 60-66. [18] SONG H Z, CHANDRASHEKHAR M V S, SUDARSHAN T S. Study of surface morphology, impurity incorporation and defect generation during homoepitaxial growth of 4H-SiC using dichlorosilane[J]. ECS Journal of Solid State Science and Technology, 2014, 4(3): P71-P76. [19] KOSHKA Y, LIN H D, MELNYCHUK G, et al. Epitaxial growth of 4H-SiC at low temperatures using CH3Cl carbon gas precursor: growth rate, surface morphology, and influence of gas phase nucleation[J]. Journal of Crystal Growth, 2006, 294(2): 260-267. [20] 钮应喜, 杨 霏, 温家良, 等. 4英寸碳化硅快速同质外延生长研究[J]. 智能电网, 2014, 2(12): 21-24. NIU Y X, YANG F, WEN J L, et al. Fast homo-epitaxy growth of 4-inch silicon carbide wafer[J]. Smart Grid, 2014, 2(12): 21-24 (in Chinese). [21] 闫果果, 张 峰, 钮应喜, 等. 氯基条件下4H-SiC衬底的同质外延生长研究[J]. 半导体光电, 2016, 37(3): 353-357. YAN G G, ZHANG F, NIU Y X, et al. Study on chloride-based homoepitaxial growth on 4° off-axis(0001)4H-SiC substrate[J]. Semiconductor Optoelectronics, 2016, 37(3): 353-357 (in Chinese). [22] FUJIBAYASHI H, ITO M, ITO H, et al. Development of a 150 mm 4H-SiC epitaxial reactor with high-speed wafer rotation[J]. Applied Physics Express, 2014, 7(1): 015502. [23] DAIGO Y, ISHIGURO A, ISHII S, et al. High in-wafer uniformity of growth rate and carrier concentration on n-type 4H-SiC epitaxial films achieved by high speed wafer rotation vertical CVD tool[J]. Materials Science Forum, 2018, 924: 88-91. [24] 韩跃斌, 蒲 勇, 施建新, 等. 高速旋转垂直热壁CVD外延生长n型4H-SiC膜的研究[J]. 人工晶体学报, 2023, 52(5): 918-924. HAN Y B, PU Y, SHI J X, et al. Epitaxial growth study of n-type 4H-SiC films by high-speed wafer rotation vertical hot-wall CVD equipment[J]. Journal of Synthetic Crystals, 2023, 52(5): 918-924 (in Chinese). [25] DANIELSSON Ö, KARLSSON M, SUKKAEW P, et al. A systematic method for predictive in silico chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2020, 124(14): 7725-7736. [26] WANG R, MA R H, DUDLEY M. Reduction of chemical reaction mechanism for halide-assisted silicon carbide epitaxial film deposition[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3860-3866. [27] MEZIERE J, UCAR M, BLANQUET E, et al. Modeling and simulation of SiC CVD in the horizontal hot-wall reactor concept[J]. Journal of Crystal Growth, 2004, 267(3/4): 436-451. [28] CAVALLOTTI C, ROSSI F, RAVASIO S, et al. A kinetic analysis of the growth and doping kinetics of the SiC chemical vapor deposition process[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9076-9087. [29] SONG B T, GAO B, HAN P F, et al. Numerical simulation of gas phase reaction for epitaxial chemical vapor deposition of silicon carbide by methyltrichlorosilane in horizontal hot-wall reactor[J]. Materials, 2021, 14(24): 7532. [30] SONG B T, GAO B, HAN P F, et al. Surface kinetic mechanisms of epitaxial chemical vapour deposition of 4H silicon carbide growth by methyltrichlorosilane-H2 gaseous system[J]. Materials, 2022, 15(11): 3768. [31] ITO M, FUJIBAYASHI H, ITO H, et al. Simulation study of high-speed wafer rotation effects in a vertical reactor for 4H-SiC epitaxial growth on 150 mm substrates[J]. Materials Science Forum, 2014, 778/779/780: 171-174. [32] MERK H J. The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems[J]. Applied Scientific Research, Section A, 1959, 8(1): 73-99. [33] VENERONI A, MASI M. Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chlorine-containing species[J]. Chemical Vapor Deposition, 2006, 12(8/9): 562-568. [34] LU W L, FANG Y L, LI J, et al. Study and reduction of the surface pits in 4H-SiC epitaxial wafer[J]. Journal of Crystal Growth, 2023, 610: 127156. [35] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. [36] LEONE S, KORDINA O, HENRY A, et al. Gas-phase modeling of chlorine-based chemical vapor deposition of silicon carbide[J]. Crystal Growth & Design, 2012, 12(4): 1977-1984. [37] CHOKAWA K, DAIGO Y, MIZUSHIMA I, et al. First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC(0001) surface under conventional CVD and Halide CVD environments[J]. Japanese Journal of Applied Physics, 2021, 60(8): 085503. [38] DANIELSSON Ö, SUKKAEW P, OJAMÄE L, et al. Shortcomings of CVD modeling of SiC today[J]. Theoretical Chemistry Accounts, 2013, 132(11): 1398. [39] 于海群, 左 然, 徐 楠, 等. 垂直式MOCVD反应器中热泳力对浓度分布的影响分析[J]. 人工晶体学报, 2012, 41(4): 1059-1065. YU H Q, ZUO R, XU N, et al. Influence of thermophoretic force on precursor concentration and thin film growth in a vertical MOCVD reactor[J]. Journal of Synthetic Crystals, 2012, 41(4): 1059-1065 (in Chinese). [40] NISHIZAWA S, PONS M. Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor[J]. Chemical Vapor Deposition, 2006, 12(8/9): 516-522. [41] SUDARSHAN T S, RANA T, SONG H Z, et al. Trade-off between parasitic deposition and SiC homoepitaxial growth rate using halogenated Si-precursors[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3079-N3086. [42] RANA T, CHANDRASHEKHAR M V S, SUDARSHAN T S. Elimination of silicon gas phase nucleation using tetrafluorosilane (SiF4) precursor for high quality thick silicon carbide (SiC) homoepitaxy[J]. Physica Status Solidi (a), 2012, 209(12): 2455-2462. [43] MITROVIC B, GURARY A, QUINN W. Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling[J]. Journal of Crystal Growth, 2007, 303(1): 323-329. [44] DAIGO Y, ISHII S, KOBAYASHI T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD[J]. Japanese Journal of Applied Physics, 2019, 58: SBBK06. [45] FERRO G, CHAUSSENDE D. A new model for in situ nitrogen incorporation into 4H-SiC during epitaxy[J]. Scientific Reports, 2017, 7: 43069. [46] DAIGO Y, WATANABE T, ISHIGURO A, et al. Reduction of harmful effect due to by-product in CVD reactor for 4H-SiC epitaxy[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2020: 1-4. |
| [1] | ZHAO Hao, YU Bowen, LI Qi, LI Guangqing, LIU Yiyuan, LIN Na, LI Yang, MU Wenxiang, JIA Zhitai. Growth of LiGa5O8 Single Crystal Thin Films and Their Conductive Mechanism by the Mist-CVD Method [J]. Journal of Synthetic Crystals, 2025, 54(6): 997-1004. |
| [2] | LI Xiang, CHEN Gen, SHEN Jie, ZHU Minghui. Effect of Substrate Type on Stress and Crystallinity of Growing Polycrystalline Diamond Film [J]. Journal of Synthetic Crystals, 2025, 54(6): 986-996. |
| [3] | ZHU Xingjie, ZHANG Ping, ZUO Dunwen. Effect of Residual Stress and Electric Field on Indentation Hardness of 4H-SiC Surface [J]. Journal of Synthetic Crystals, 2025, 54(4): 560-568. |
| [4] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
| [5] | HU Jichao, ZHAO Qiyang, YANG Zhihao, YANG Ying, PENG Bo, DING Xiongjie, LIU Wei, ZHANG Hong. Simulation Study on the Effect of Gallium Source Temperature on the Temperature Field in LPCVD Gallium Oxide Epitaxy [J]. Journal of Synthetic Crystals, 2025, 54(3): 452-461. |
| [6] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
| [7] | YAO Suhao, ZHANG Maolin, JI Xueqiang, YANG Lili, LI Shan, GUO Yufeng, TANG Weihua. Mist CVD Grown High-Phase-Purity α-Ga2O3 and Its Photoresponse Performance [J]. Journal of Synthetic Crystals, 2025, 54(2): 233-243. |
| [8] | DONG Zengyin, WANG Yingmin, ZHANG Song, LI He, SUN Kewei, CHENG Hongjuan, LIU Chao. Homoepitaxial Growth of Gallium Oxide Thick Films by HVPE Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 227-232. |
| [9] | GAO Jiaqing, QU Xiaoyong, WU Xiang, GUO Yonggang, WANG Yonggang, WANG Liang, TAN Xin, YANG Xinze. Tunneling Oxidation and Passivation Process of p-Type TOPCon Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 133-138. |
| [10] | LIU Shuai, XIONG Huifan, YANG Xia, YANG Deren, PI Xiaodong, SONG Lihui. Effects of Electron Irradiation on Defects of 4H-SiC MOS Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1536-1541. |
| [11] | WU Rui, HU Yang, TANG Rongfen, YANG Qian, WANG Xu, WU Yiyi, NIE Dengpan, WANG Huanjiang. Study of Gas-Phase Parasitic Reaction Pathways for ZnO Thin Film Grown by MOCVD [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1608-1619. |
| [12] | SHEN Xi, SHI Yonggui, WAN Yuhui, FU Ying, MA Jiaheng, YANG Haodong, WANG Yijia. Effects of Chamber Materials on the Preparation of Graphene on the Oxidized Copper Foils Substrate [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1648-1654. |
| [13] | CHENG Jiahui, YANG Lei, WANG Jinnan, GONG Chunsheng, ZHANG Zesheng, JIAN Jikang. Molten KOH Etching Behaviors of Heavily Doped P-Type SiC [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 773-780. |
| [14] | DAI Tongguang, TAN Xin, SONG Zhicheng, GUO Yonggang, YUAN Yajing, NI Yufeng, WANG Liang. Single-Sided Deposition of Poly-Si in TOPCon Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 818-823. |
| [15] | XU Yuqi, LI Qingwen, ZHONG Min. Preparation of BiOI Films with High c-axis Orientation by Chemical Vapor Deposition [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 841-847. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS