[1] LIU Z, LI S, YAN Z Y, et al. Construction of a β-Ga2O3-based metal-oxide-semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications[J]. Journal of Materials Chemistry C, 2020, 8(15): 5071-5081. [2] PLAYFORD H Y, HANNON A C, BARNey E R, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction[J]. Chemistry, 2013, 19(8): 2803-2813. [3] PRATIYUSH A S, KRISHNAMOORTHY S, MURALIDHARAN R, et al. Advances in Ga2O3 solar-blind UV photodetectors[M]//Gallium Oxide. Amsterdam: Elsevier, 2019: 369-399. [4] GUO D Y, ZHAO X L, ZHI Y S, et al. Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films[J]. Materials Letters, 2016, 164: 364-367. [5] ORITA M, HIRAMATSU H, OHTA H, et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures[J]. Thin Solid Films, 2002, 411(1): 134-139. [6] BALASUBRAMANI V, AHAMED A N, CHANDRALEKA S, et al. Highly sensitive and selective H2S gas sensor fabricated with β-Ga2O3/rGO[J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055009. [7] LIN C H, LEE C T. Ga2O3-based solar-blind deep ultraviolet light-emitting diodes[J]. Journal of Luminescence, 2020, 224: 117326. [8] KANG H C. Heteroepitaxial growth of multidomain Ga2O3/sapphire(001) thin films deposited using radio frequency magnetron sputtering[J]. Materials Letters, 2014, 119: 123-126. [9] ZHANG F B, SAITO K, TANAKA T, et al. Electrical properties of Si doped Ga2O3 films grown by pulsed laser deposition[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9624-9629. [10] GOYAL A, YADAV B S, THAKUR O P, et al. Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique[J]. Journal of Alloys and Compounds, 2014, 583: 214-219. [11] MI W, MA J, LUAN C N, et al. Structural and optical properties of β-Ga2O3 films deposited on MgAl2O4 (100) substrates by metal-organic chemical vapor deposition[J]. Journal of Luminescence, 2014, 146: 1-5. [12] CHEN Y P, LIANG H W, XIA X C, et al. Effect of growth pressure on the characteristics of β-Ga2O3 films grown on GaAs (100) substrates by MOCVD method[J]. Applied Surface Science, 2015, 325: 258-261. [13] RAFIQUE S, HAN L, NEAL A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition[J]. Applied Physics Letters, 2016, 109(13): 132103. [14] FENG Z X, KARIM M R, ZHAO H P. Low pressure chemical vapor deposition of β-Ga2O3 thin films: dependence on growth parameters[J]. 2018, 7(2): 022514. [15] KIM M Y, LEE H J, BYUN D W, et al. Modeling and investigation of the effect of annealing on the electrothermal properties of Ga2O3/SiC heterojunction diodes[J]. Thin Solid Films, 2022, 751: 139200. [16] RAFIQUE S, HAN L, NEAL A T, et al. Towards high-mobility heteroepitaxial β-Ga2O3 on sapphire-dependence on the substrate off-axis angle[J]. Physica Status Solidi (a), 2018, 215(2): 1700467. [17] XU B, HU J C, HE X M, et al. Effect of growth temperature on the characteristics of β-Ga2O3 thin films grown on 4H-SiC (0001) substrates by low pressure chemical vapor deposition[C]//2021 IEEE 4th International Conference on Electronics Technology (ICET). May 7-10, 2021. Chengdu, China. IEEE, 2021. [18] HU J C, XU B, ZHANG Z H, et al. Step flow growth of β-Ga2O3 films on off-axis 4H-SiC substrates by LPCVD[J]. Surfaces and Interfaces, 2023, 37: 102732. [19] HU J C, YANG X D, MENG J Q, et al. Effects of off-axis angles of 4H-SiC substrates on properties of β-Ga2O3 films grown by low-pressure chemical vapor deposition[J]. Applied Surface Science, 2025, 680: 161377. [20] LITTLEJOHN A J, XIANG Y, RAUCH E, et al. van der Waals epitaxy of Ge films on mica[J]. 2017, 122(18): 185305. [21] ZHOU N, YANG R, ZHAI T. Two-dimensional non-layered materials[J]. Materials Today Nano, 2019, 8: 100051. [22] XU B, HU J C, ZHANG Q, et al. Band alignment and electronic structure of β-Ga2O3 (-201) grown on Si- and C-faces of 4H-SiC substrates[J]. Vacuum, 2024, 224: 113164. [23] 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016. TANG J P. ANSYS FLUENT 16.0 super learning manual[M]. Beijing: People's Posts and Telecommunications Press, 2016 (in Chinese). [24] 杨世铭, 陶文铨. 传热学[M]. 3版. 北京: 高等教育出版社, 1998. YANG S M, TAO W Q. Heat transfer science[M]. 3rd ed. Beijing: Higher Education Press, 1998 (in Chinese). [25] MITROVIC B, PAREKH A, RAMER J, et al. Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors[J]. Journal of Crystal Growth, 2006, 289(2): 708-714. [26] TOKUNAGA H, TAN H, INAISHI Y, et al. Performance of multiwafer reactor GaN MOCVD system[J]. Journal of Crystal Growth, 2000, 221(1/2/3/4): 616-621. |