[1] SASAKI K. Prospects for β-Ga2O3: now and into the future[J]. Applied Physics Express, 2024, 17(9): 090101. [2] 穆文祥, 贾志泰, 陶绪堂. 4英寸氧化镓单晶生长与性能[J]. 人工晶体学报, 2022, 51(9/10): 1749-1753. MU W X, JIA Z T, TAO X T. Growth and properties of 4-inch gallium oxide single crystal[J]. Journal of Synthetic Crystals, 2022, 51(9/10): 1749-1753 (in Chinese). [3] SWALLOW J E N, VORWERK C, MAZZOLINI P, et al. Influence of polymorphism on the electronic structure of Ga2O3[J]. Chemistry of Materials, 2020, 32(19): 8460-8470. [4] IRMSCHER K, GALAZKA Z, PIETSCH M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Applied Physics, 2011, 110(6): 063720. [5] 张 晋, 胡壮壮, 穆文祥, 等. 高质量氧化镓单晶及肖特基二极管的制备[J]. 人工晶体学报, 2020, 49(11): 2194-2199. ZHANG J, HU Z Z, MU W X, et al. High quality β-Ga2O3 single crystal and fabrication of Schottky diode[J]. Journal of Synthetic Crystals, 2020, 49(11): 2194-2199 (in Chinese). [6] HOU X H, ZHAO X L, ZHANG Y, et al. High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering[J]. Advanced Materials, 2022, 34(1): 2106923. [7] WANG J J, JI X Q, YAN Z Y, et al. The role of oxygen vacancies in Ga2O3-based solar-blind photodetectors[J]. Journal of Alloys and Compounds, 2024, 970: 172448. [8] 李志伟, 唐慧丽, 徐 军, 等. 超宽禁带半导体氧化镓基X射线探测器的研究进展[J]. 人工晶体学报, 2022, 51(3): 523-537+570. LI Z W, TANG H L, XU J, et al. Research progress of ultra-wide band gap semiconductor Ga2O3-based X-ray detectors[J]. Journal of Synthetic Crystals, 2022, 51(3): 523-537+570 (in Chinese). [9] HEINSELMAN K N, HAVEN D, ZAKUTAYEV A, et al. Projected cost of gallium oxide wafers from edge-defined film-fed crystal growth[J]. Crystal Growth & Design, 2022, 22(8): 4854-4863. [10] FU B, JIAN G Z, MU W X, et al. Crystal growth and design of Sn-doped β-Ga2O3: morphology, defect and property studies of cylindrical crystal by EFG[J]. Journal of Alloys and Compounds, 2022, 896: 162830. [11] TANG H L, HE N T, ZHANG H, et al. Inhibition of volatilization and polycrystalline cracking, and the optical properties of β-Ga2O3 grown by the EFG method[J]. CrystEngComm, 2020, 22(5): 924-931. [12] 贾志泰, 穆文祥, 尹延如, 等. 导模法生长高质量氧化镓单晶的研究[J]. 人工晶体学报, 2017, 46(2): 193-196. JIA Z T, MU W X, YIN Y R, et al. Growth of high quality β-Ga2O3 single crystal by EFG method[J]. Journal of Synthetic Crystals, 2017, 46(2): 193-196 (in Chinese). [13] REESE S B, REMO T, GREEN J, et al. How much will gallium oxide power electronics cost?[J]. Joule, 2019, 3(4): 903-907. [14] HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. [15] BU Y Z, SAI Q L, QI H J. Stability of interfacial thermal balance in thick β-Ga2O3 crystal growth by EFG[J]. Journal of Crystal Growth, 2023, 612: 127194. [16] STELIAN C, BARTHALAY N, DUFFAR T. Numerical investigation of factors affecting the shape of the crystal-melt interface in edge-defined film-fed growth of sapphire crystals[J]. Journal of Crystal Growth, 2017, 470: 159-167. [17] MILLER W, BÖTTCHER K, GALAZKA Z, et al. Numerical modelling of the Czochralski growth of β-Ga2O3[J]. Crystals, 2017, 7(1): 26. [18] YECKEL A. Modeling high speed growth of large rods of cesium iodide crystals by edge-defined film-fed growth (EFG)[J]. Journal of Crystal Growth, 2016, 449: 75-85. [19] OHBA E, KOBAYASHI T, TAISHI T, et al. Growth of (100), (010) and (001) β-Ga2O3 single crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 556: 125990. [20] HOSHIKAWA K, KOBAYASHI T, MATSUKI Y, et al. 2-inch diameter (100) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air[J]. Journal of Crystal Growth, 2020, 545: 125724. [21] KURAMATA A, KOSHI K, WATANABE S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2. [22] WANG B G, LOOK D, FARLOW G. Optical and electrical properties of Ti-doped β-Ga2O3 (Ti3+∶β-Ga2O3) bulk crystals grown by floating zone method[J]. Journal of Physics D: Applied Physics, 2020, 53(44): 444001. [23] SUZUKI N, OHIRA S, TANAKA M, et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal[J]. Physica Status Solidi C, 2007, 4(7): 2310-2313. [24] TAO X T. Bulk gallium oxide single crystal growth[J]. Journal of Semiconductors, 2019, 40(1): 010401. [25] FU B, JIA Z T, MU W X, et al. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism[J]. Journal of Semiconductors, 2019, 40(1): 011804. |