
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1740-1747.DOI: 10.16553/j.cnki.issn1000-985x.2025.171
林文芳1,2(
), 黄从晖1,2, 房倩楠1, 张宇航1,2, 李善明1,2, 陶斯亮1, 赵呈春1,2, 杭寅1,2(
)
收稿日期:2025-08-01
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
杭寅,研究员。E-mail:yhang@siom.ac.cn
作者简介:林文芳(1998—),女,海南省人,硕士研究生。E-mail:linwenfang@siom.ac.cn基金资助:
LIN Wenfang1,2(
), HUANG Conghui1,2, FANG Qiannan1, ZHANG Yuhang1,2, LI Shanming1,2, TAO Siliang1, ZHAO Chengchun1,2, HANG Yin1,2(
)
Received:2025-08-01
Online:2025-10-20
Published:2025-11-11
摘要: Nd∶GdScO3晶体是一种新型激光材料,其非均匀展宽光谱特性有利于实现新波长跃迁。实验采用提拉法生长了钕掺杂浓度为0.66%(原子数分数)的Nd∶GdScO3晶体,以未镀膜的b切晶体结合石英双折射片(QBP),在V型折叠腔结构中首次实现了1和1.3 μm波段的多波长激光输出。1 μm波段,在1 085.0、1071.4和1 092.6 nm处分别实现了5.3、3.5和2.3 W连续激光输出,斜率效率分别为61.0%、45.0%和30.0%;1.3 μm波段实现了双波长连续激光输出,输出功率1.25 W,斜率效率39.0%,波长分别为1 353.6和1 375.3 nm。在1 375.3 nm处还获得了调谐范围为4.0 nm的可调谐激光。研究结果表明,Nd∶GdScO3是一种具有非均匀展宽光谱的新型激光晶体,可以扩展钕离子的激光波长范围。
中图分类号:
林文芳, 黄从晖, 房倩楠, 张宇航, 李善明, 陶斯亮, 赵呈春, 杭寅. Nd∶GdScO3晶体多波长激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1740-1747.
LIN Wenfang, HUANG Conghui, FANG Qiannan, ZHANG Yuhang, LI Shanming, TAO Siliang, ZHAO Chengchun, HANG Yin. Multi-Wavelength Laser Operation in Nd∶GdScO3 Crystal[J]. Journal of Synthetic Crystals, 2025, 54(10): 1740-1747.
图2 光线传播图。双折射片的晶轴取向为任意方向。图中蓝线表示晶轴方向,红线表示光束传播方向;ρ为双折射片的旋转角,σ为光轴与表面法线的夹角,d为晶体厚度,γ为晶轴与光束传播方向的夹角
Fig.2 Schematic diagram of a birefringent plate at Brewster’s angle. The orientation of the plate’s crystal axis is arbitrary. Blue line represents orientation of the crystal, red line represents direction of beam propagation, ρ is the rotation angle of the plate, σ is the angle between the optical axis and the surface normal, d is the thickness of the crystal, γ is the angle between the crystal axis and the beam propagation direction
图4 Nd∶GdScO3晶体在1 μm波段的激光性能。(a)输出镜透过率17.0%时,1 085.4、1 071.4和1 092.6 nm激光输出功率随吸收功率的变化关系;(b)1 085.4、1 071.4和1 092.6 nm处的激光光谱
Fig.4 Laser performance of Nd∶GdScO3 at 1 μm region. (a) Output power versus absorbed power at 1 085.4, 1 071.4 and 1 092.6 nm with 17.0% transmittance of OC; (b) laser spectra at 1 085.4, 1 071.4 and 1 092.6 nm
图5 仿真结果。(a)1 071.4和1 092.6 nm激光在旋转角0°~90°对应的透过率;(b)旋转角为34.6°, 37.9°, 54.4°和58.3°不同波长对应的透过率
Fig.5 Simulated results. (a) Transmittance at rotation angle of 0°~90° at 1 071.4 and 1 092.6 nm; (b) transmittance at selected rotation angle of 34.6°, 37.9°, 54.4° and 58.3°
| Wavelength/nm | Transition | σem/(10-20 cm2) | σem/σ1085.4 |
|---|---|---|---|
| 1 071.4 | 4F3/2→4I11/2 | 5.0 | 0.68 |
| 1 085.4 | 4F3/2→4I11/2 | 7.4 | 1 |
| 1 092.6 | 4F3/2→4I11/2 | 2.3 | 0.31 |
表1 b切Nd∶GdScO3晶体的1 μm波段不同波长(1 071.4, 1 085.4和1 092.6 nm)的发射截面( σem)
Table 1 Emission cross-section ( σem) of b-cut Nd∶GdScO3 crystal at different wavelengths (1 071.4, 1 085.4, and 1 092.6 nm) of 1 μm
| Wavelength/nm | Transition | σem/(10-20 cm2) | σem/σ1085.4 |
|---|---|---|---|
| 1 071.4 | 4F3/2→4I11/2 | 5.0 | 0.68 |
| 1 085.4 | 4F3/2→4I11/2 | 7.4 | 1 |
| 1 092.6 | 4F3/2→4I11/2 | 2.3 | 0.31 |
图6 Nd∶GdScO3晶体在1.3 μm波段的激光性能。(a)输出透过率为5.0%时,1 353.6与1 375.3 nm双波长激光输出功率随吸收功率的变化关系;(b)双波长激光光谱
Fig.6 Laser performance of Nd∶GdScO3 at 1.3 μm region. (a) Dual-wavelength output power versus absorbed power at 1 353.6 and 1 375.3 nm with 5.0% transmittance of OC; (b) laser spectrum of dual-wavelength laser
图7 Nd∶GdScO3晶体1 375.3 nm调谐激光性能。(a)可调谐波长的输出功率;(b)归一化强度调谐激光光谱
Fig.7 Tuning lasers performance at 1 375.3 nm of the Nd∶GdScO3 crystal. (a) Output power of tunable wavelength; (b) normalized intensity laser spectra in the tuning range
| Wavelength/nm | Transition | σem/(10-20 cm2) | σem/σ1 353.6 | σem/σ1 375.3 |
|---|---|---|---|---|
| 1 353.6 | 4F3/2→4I13/2 | 2.3 | 1 | — |
| 1 375.3 | 4F3/2→4I13/2 | 1.5 | 0.65 | 1 |
| 1 373.4 | 4F3/2→4I13/2 | 1.2 | 0.52 | 0.80 |
| 1 377.4 | 4F3/2→4I13/2 | 1.2 | 0.52 | 0.80 |
表2 b切Nd∶GdScO3晶体的1.3 μm波段不同波长(1 353.6、1 375.3、1 373.4和1 377.4 nm)的发射截面( σem)
Table 2 Emission cross-section ( σem) of b-cut Nd∶GdScO3 crystal at different wavelengths (1 353.6, 1 375.3, 1 373.4 and 1 377.4 nm) of 1.3 μm
| Wavelength/nm | Transition | σem/(10-20 cm2) | σem/σ1 353.6 | σem/σ1 375.3 |
|---|---|---|---|---|
| 1 353.6 | 4F3/2→4I13/2 | 2.3 | 1 | — |
| 1 375.3 | 4F3/2→4I13/2 | 1.5 | 0.65 | 1 |
| 1 373.4 | 4F3/2→4I13/2 | 1.2 | 0.52 | 0.80 |
| 1 377.4 | 4F3/2→4I13/2 | 1.2 | 0.52 | 0.80 |
图8 仿真结果。(a)旋转角度为25°~75°时,1 373.4和1 377.4 nm处的透射率;(b)旋转角35.5°、36.0°、62.9°和63.7°不同波长透射率
Fig.8 Simulated results. (a) Transmittance at rotation angle of 25°~75° at 1 373.4 and 1 377.4 nm; (b) transmittance at selected rotation angle of 35.5°, 36.0°, 62.9° and 63.7°
| [1] |
UPPUTURI P K, DAS D, MAHESHWARI M, et al. Real-time monitoring of temperature using a pulsed laser-diode-based photoacoustic system[J]. Optics Letters, 2020, 45(3): 718-721.
DOI PMID |
| [2] |
WANG Y H, ZHAO C J, DONG D M, et al. Real-time monitoring of insects based on laser remote sensing[J]. Ecological Indicators, 2023, 151: 110302.
DOI URL |
| [3] | MARQUES A, CUNHA A, FARIA S, et al. Predictive models on the influence of laser texturing parameters on the Inconel 718 surface by using Nd∶YVO4 laser[J]. Optics & Laser Technology, 2022, 154: 108320. |
| [4] |
BIAN Q, BO Y, ZUO J W, et al. High-power wavelength-tunable and power-ratio-controllable dual-wavelength operation at 1319 nm and 1338 nm in a Q-switched Nd∶YAG laser[J]. Photonics Research, 2022, 10(10): 2287-2292.
DOI URL |
| [5] |
FAN L, SHEN J, WANG X Y, et al. Efficient continuous-wave eye-safe Nd∶YVO4 self-Raman laser at 1.5 µm[J]. Optics Letters, 2021, 46(13): 3183-3186.
DOI URL |
| [6] |
JIANG C, HUANG W N, HE Q B, et al. High-power diode-end-pumped 1314 nm laser based on the multi-segmented Nd∶YLF crystal[J]. Optics Letters, 2023, 48(3): 799-802.
DOI URL |
| [7] |
SUN S J, WEI Q, LI B X, et al. The YMgB5O10 crystal preparation and attractive multi-wavelength emission characteristics of doping Nd3+ ions[J]. Journal of Materials Chemistry C, 2021, 9(6): 1945-1957.
DOI URL |
| [8] |
WARITANANT T, MAJOR A. Diode-pumped Nd∶YVO4 laser with discrete multi-wavelength tunability and high efficiency[J]. Optics Letters, 2017, 42(6): 1149.
DOI URL |
| [9] |
SAHA A, RAY A, MUKHOPADHYAY S, et al. Simultaneous multi-wavelength oscillation of Nd laser around 1.3 µm: a potential source for coherent terahertz generation[J]. Optics Express, 2006, 14(11): 4721-4726.
DOI URL |
| [10] |
TZENG Y S, HUANG Y J, TANG C Y, et al. High-power tunable single- and multi-wavelength diode-pumped Nd∶YAP laser in the 4F3/2→4I11/2 transition[J]. Optics Express, 2013, 21(22): 26261-26268.
DOI URL |
| [11] |
ZHANG Y H, LI S M, DU X, et al. Yb∶GdScO3 crystal for efficient ultrashort pulse lasers[J]. Optics Letters, 2021, 46(15): 3641-3644.
DOI URL |
| [12] |
PENG F, LIU W P, LUO J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy∶GdScO3 and Dy, Tb∶GdScO3 as promising 578 nm laser crystals[J]. CrystEngComm, 2018, 20(40): 6291-6299.
DOI URL |
| [13] |
PENG F, LIU W P, ZHANG Q L, et al. Growth, structure, and spectroscopic characteristics of a promising yellow laser crystal Dy∶GdScO3 [J]. Journal of Luminescence, 2018, 201: 176-181.
DOI URL |
| [14] |
DONG J S, LI J D, WANG Q G, et al. Crystal growth and spectroscopic analysis of Ho, Eu∶GdScO3 crystal for 3 μm mid-infrared emission[J]. Journal of Luminescence, 2023, 254: 119515.
DOI URL |
| [15] | LI S M, FANG Q N, ZHANG Y H, et al. 2 μm Ultrabroad spectra and laser operation of Tm∶GdScO3 crystal[J]. Optics & Laser Technology, 2021, 143: 107345. |
| [16] | LI S M, TAO S L, ZHANG S Y, et al. Tm∶GdScO3: a promising crystal for continuous-wave and passively Q-switched laser at 2 μm[J]. Optics & Laser Technology, 2022, 156: 108628. |
| [17] |
ZHANG N, SONG Q S, et al. 44-fs pulse generation at 2.05 µm from a SESAM mode-locked Tm∶GdScO3 laser[J]. Optics Letters, 2023, 48(2): 510.
DOI URL |
| [18] | SUDA J, KAMISHIMA O, KAWAMURA J, et al. Anharmonicity on Raman active phonon modes of LaAlO3 [J]. Journal of Physics: Conference Series, 2009, 150(5): 052249. |
| [19] | ZHANG Y H, HUANG C H, XU M, et al. Nd∶GdScO3 crystal: polarized spectroscopic, thermal properties, and laser performance at 1.08 µm[J]. Optics & Laser Technology, 2023, 167: 109709. |
| [20] | LIU H L, ZHAO Z X, XIA J, et al. Tunable Pr3+∶LiYF4 lasers in the green-red spectral region[J]. Journal of Applied Physics, 2021, 129(8): 083102. |
| [21] |
DEMıRBAS U. Off-surface optic axis birefringent filters for smooth tuning of broadband lasers[J]. Applied Optics, 2017, 56(28): 7815.
DOI URL |
| [22] |
MERMILLIOD N, ROMERO R, CHARTIER I, et al. Performance of various diode-pumped Nd∶laser materials: influence of inhomogeneous broadening[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1179-1187.
DOI URL |
| [23] |
FAN T Y, BYER R L. Diode laser-pumped solid-state lasers[J]. IEEE Journal of Quantum Electronics, 1988, 24(6): 895-912.
DOI URL |
| [24] |
FINDLAY D, CLAY R A. The measurement of internal losses in 4-level lasers[J]. Physics Letters, 1966, 20(3): 277-278.
DOI URL |
| [25] |
LÜNSTEDT K, PAVEL N, PETERMANN K, et al. Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1 063 nm in Nd∶GdVO4 [J]. Applied Physics B, 2007, 86(1): 65-70.
DOI URL |
| [26] |
DONG L L, XU Y, YAO Y P, et al. Tunable laser operations in a Nd-doped SrLaAlO4 crystal[J]. RSC Advances, 2017, 7(80): 50961-50965.
DOI URL |
| [1] | 周丽娜, 刘建强, 牛晓伟. 首量科技:ø210 mm大尺寸Eu3+∶CaF2激光晶体生长[J]. 人工晶体学报, 2025, 54(2): 358-359. |
| [2] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [3] | 刘小虎, 朱昭捷, 涂朝阳, 王燕. 大尺寸Yb∶CALGO晶体的生长工艺研究[J]. 人工晶体学报, 2025, 54(10): 1858-1866. |
| [4] | 龚兴红, 陈雨金, 黄建华, 林炎富, 黄艺东. Er3+/Yb3+双掺ScLuSi2O7混晶:高性能1.55 μm波段激光晶体的构建及性能研究[J]. 人工晶体学报, 2025, 54(10): 1796-1810. |
| [5] | 吴闻杰, 谭俊成, 张雅馨, 李真, 吕启涛, 张沛雄, 陈振强. Yb3+掺杂Ca(Y,Gd)AlO4混晶的生长、光谱和激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1780-1786. |
| [6] | 窦仁勤, 刘耀, 罗建乔, 王小飞, 刘文鹏, 张庆礼. Nd∶GdYAG激光晶体的光谱分析及热学性能研究[J]. 人工晶体学报, 2024, 53(9): 1504-1511. |
| [7] | 于行, 赵琪, 齐小方, 马文成, 徐永宽, 胡章贵. 热交换法掺钛蓝宝石晶体生长过程中内辐射传热对晶体热应力的影响[J]. 人工晶体学报, 2024, 53(7): 1212-1221. |
| [8] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
| [9] | 任永春, 李健达, 曹笑, 黄燚, 张帆, 张宁, 薛艳艳, 王庆国, 唐慧丽, 徐晓东, 董永军, 徐军. 高熔点稀土氧化物激光晶体的研究进展[J]. 人工晶体学报, 2024, 53(11): 1829-1839. |
| [10] | 张志恒, 侯文涛, 刘坚, 李东振, 薛艳艳, 王庆国, 吕莎莎, 徐晓东, 徐军. Er3+掺杂CaYAlO4晶体光谱和激光性能研究[J]. 人工晶体学报, 2024, 53(11): 1868-1876. |
| [11] | 丁雨憧, 张灵, 李海林, 张月, 唐杨, 强铭, 林辉. 水平定向结晶法生长浓度渐变Yb∶YAG激光晶体及光谱性能研究[J]. 人工晶体学报, 2024, 53(10): 1688-1698. |
| [12] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
| [13] | 李兴旺, 韩剑锋, 芦佳, 邢晓文, 王永国, 魏磊, 徐学珍. 大尺寸Tm∶YAP复合激光晶体的生长与性能研究[J]. 人工晶体学报, 2023, 52(7): 1236-1242. |
| [14] | 王无敌, 王庆国, 薛艳艳, 唐慧丽, 徐子寒, 张晨波, 房前成, 吴锋, 罗平, 徐晓东, 苏良碧, 李岩, 韩建峰, 逯占文, 徐军. Pr3+掺杂碱土混合氟化物激光晶体的生长与发光性能研究[J]. 人工晶体学报, 2023, 52(7): 1258-1269. |
| [15] | 黄建华, 吴杰, 黄艺东, 林炎富, 龚兴红, 陈雨金. Er3+,Yb3+∶Ba3Gd(PO4)3晶体的生长、光谱和1.5 μm激光性能[J]. 人工晶体学报, 2023, 52(7): 1286-1295. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS