欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (2): 202-211.DOI: 10.16553/j.cnki.issn1000-985x.2024.0266

• 晶体生长、掺杂和缺陷 • 上一篇    下一篇

光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究

杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波   

  1. 同济大学物理科学与工程学院,先进微结构材料教育部重点实验室,上海 200092
  • 收稿日期:2024-10-31 发布日期:2025-03-04
  • 通信作者: 唐慧丽,博士,教授。E-mail:tanghl@tongji.edu.cn;唐慧丽,同济大学物理科学与工程学院教授、博士生导师。长期从事超宽禁带半导体氧化镓单晶制备、性能调控与应用研究。刘 波,博士,教授。E-mail:lbo@tongji.edu.cn;刘 波,同济大学物理科学与工程学院教授、博士生导师。长期从事核辐射探测技术研究。
  • 作者简介:杨晓龙(1999—),男,江苏省人,硕士研究生。E-mail:yangxl934@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(12375181,12275194);上海市科学技术委员会资助项目(23511102302);中央高校基本科研业务费专项资金项目(22120220626)

Growth and Spectral Properties of Bi-Doped β-Ga2O3 Single Crystal by Optical Floating Zone Method

YANG Xiaolong, TANG Huili, ZHANG Chaoyi, SUN Peng, HUANG Lin, CHEN Long, XU Jun, LIU Bo   

  1. Key Laboratory of Advanced Microstructure Materials, Ministry of Education, School of Physical Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2024-10-31 Published:2025-03-04

摘要: 超宽禁带半导体β-Ga2O3因出色的光电特性而成为研究的焦点。元素掺杂对β-Ga2O3光谱性质的影响是材料科学领域的一个重要研究方向,具有显著的研究价值和应用前景。本研究通过光学浮区(OFZ)法,在CO2环境中成功生长出β-Ga2O3∶6%Bi单晶,并着重研究Bi掺杂β-Ga2O3单晶的光谱性质。利用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)结合能量色散X射线光谱(EDS)、X射线光电子能谱(XPS)以透过光谱和荧光光谱等先进的表征技术,对样品的晶体结构、元素组成及光谱性质进行了较全面的测试与分析。实验结果揭示,由于离子半径差异大,Bi离子较难掺入β-Ga2O3晶格,掺入的Bi离子主要替代了GaO6八面体中的Ga离子位置。与非故意掺杂β-Ga2O3相比,Bi掺杂β-Ga2O3单晶在红外区域的透射率降低,载流子浓度增加;荧光发射光谱强度降低,荧光衰减时间缩短。这些发现不仅深化了对Bi掺杂β-Ga2O3单晶光谱性质的理解,而且为该材料在闪烁和辐射探测等领域的应用提供了技术启示。

关键词: Bi掺杂β-Ga2O3, 光学浮区法, 晶体生长, 拉曼光谱, 光谱特性, 发射光谱强度, 荧光衰减时间

Abstract: β-Ga2O3, a semiconductor with a wide bandgap, has garnered significant attention from researchers owing to its remarkable optoelectronic properties. The exploration of how elemental doping affects the spectral properties of β-Ga2O3 constitutes a pivotal research area within materials science, offering substantial research value and promising application prospects. In this study, β-Ga2O3∶6%Bi single crystal was successfully synthesized in the CO2 atmosphere through the utilization of the optical floating zone (OFZ) method. The primary focus of this investigation was to delve into the spectral properties of the Bi-doped β-Ga2O3 single crystal. To gain a thorough understanding of the samples, a battery of sophisticated characterization techniques was employed. These included X-ray diffraction (XRD) for analyzing the crystal structure, Raman spectroscopy for probing vibrational modes, scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDS) for examining surface morphology and elemental composition, X-ray photoelectron spectroscopy (XPS) for determining chemical states, and both transmission and fluorescence spectroscopy for assessing optical properties. The experimental outcomes unveiled that it is difficult for Bi ions to be doped into the β-Ga2O3 crystal lattice due to the large difference in ionic radii. The doped Bi ions predominantly occupied the sites of Ga ions within the GaO6 octahedra. Compared with unintentionally doped β-Ga2O3, Bi-doped β-Ga2O3 single crystals exhibit a decrease in transmittance in the infrared region and an increase in carrier concentration; the emission spectral intensity is reduced, and the fluorescence decay time is shortened. These groundbreaking discoveries not only enhance our comprehension of the spectral properties of Bi-doped β-Ga2O3 single crystals but also offer technical insights for the potential application of this material in diverse fields, including scintillator materials and radiation detection systems.

Key words: Bi-doped β-Ga2O3, optical floating zone method, crystal growth, Raman spectroscopy, spectral property, emission spectral intensity, fluorescence decay time

中图分类号: