
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 1050-1060.DOI: 10.16553/j.cnki.issn1000-985x.2024.0314
收稿日期:2024-12-12
出版日期:2025-06-20
发布日期:2025-06-23
通信作者:
吴家隐,博士,副教授。E-mail:作者简介:莫秋燕(1985—),女,广西壮族自治区人,副教授。E-mail:103047249@qq.com
基金资助:
MO Qiuyan1(
), WU Jiayin2(
), JING Tao3
Received:2024-12-12
Online:2025-06-20
Published:2025-06-23
摘要: 本文采用第一性原理计算方法系统研究了C2H6和C6H6 两种有机气体在氮化铝(AlN)单层及Pt修饰AlN的吸附特性。研究结果表明:对于C2H6,当其吸附在本征AlN单层上时,表现出较小的吸附能和电荷转移量,导致AlN单层对C2H6的敏感性较差;在Pt修饰后,AlN单层对C2H6的吸附性能没有明显提高。相比之下,Pt修饰提高了AlN单层对C6H6的吸附能力,Pt修饰AlN对C6H6的吸附能为-0.564 eV,通过带隙和功函数的变化,Pt修饰AlN单层对C6H6表现出更高的灵敏度。此外,适中的吸附能量和在室温下较短的恢复时间(3.45×10-4 s)表明,Pt修饰的AlN单层在检测C6H6分子时还具有良好的可重复性。研究为C2H6和C6H6在Pt修饰AlN单层上的吸附行为提供了详细的微观解析,可促进AlN基材料在气敏领域的应用。
中图分类号:
莫秋燕, 吴家隐, 荆涛. Pt修饰AlN单层对C2H6和C6H6吸附和气敏特性的第一性原理研究[J]. 人工晶体学报, 2025, 54(6): 1050-1060.
MO Qiuyan, WU Jiayin, JING Tao. First-Principle Study on the Gas Sensing Properties of C2H6 and C6H6 with Pt Modified AlN Monolayer[J]. Journal of Synthetic Crystals, 2025, 54(6): 1050-1060.
图1 (a)本征AlN单层最稳定构型;(b) Pt-AlN单层最稳定构型;(c) Pt-AlN单层的差分电荷密度图
Fig.1 (a) The most stable configuration of intrinsic AlN monolayer; (b) the most stable configuration of Pt-AlN monolayer; (c) differential charge density plot of Pt-AlN monolayer
图2 (a)本征AlN单层的能带结构;(b)Pt-AlN单层的能带结构;(c) Pt-AlN单层的态密度
Fig.2 (a) Band structure of intrinsic AlN monolayer; (b) band structure of Pt-AlN monolayer; (c) density of states of Pt-AlN monolayer
| Adsorption site | Adsorption configuration | Energy/eV | Adsorption site | Energy/eV |
|---|---|---|---|---|
| H | i | -389.763 | TAl | -389.788 |
| ii | -389.717 | -389.737 | ||
| I | -425.968 | -425.556 | ||
| II | -425.598 | -425.584 | ||
| III | -425.413 | -425.488 | ||
| TN | i | -389.765 | B | -389.739 |
| ii | -389.738 | -389.729 | ||
| I | -425.813 | -425.908 | ||
| II | -425.743 | -425.627 | ||
| III | -425.504 | -425.434 |
表1 本征AlN单层吸附C2H6和C6H6气体分子在不同位点及不同构型的能量
Table 1 Energy of C2H6 and C6H6 gas molecules adsorbed by intrinsic AlN monolayer at different sites and configurations
| Adsorption site | Adsorption configuration | Energy/eV | Adsorption site | Energy/eV |
|---|---|---|---|---|
| H | i | -389.763 | TAl | -389.788 |
| ii | -389.717 | -389.737 | ||
| I | -425.968 | -425.556 | ||
| II | -425.598 | -425.584 | ||
| III | -425.413 | -425.488 | ||
| TN | i | -389.765 | B | -389.739 |
| ii | -389.738 | -389.729 | ||
| I | -425.813 | -425.908 | ||
| II | -425.743 | -425.627 | ||
| III | -425.504 | -425.434 |
| Ead/eV | d/Å | ∆Q/e | Eg/eV | ||
|---|---|---|---|---|---|
| C2H6/AlN | -0.184 | 2.990 | 0.022 | 2.897 | 5.238 |
| C6H6/AlN | -0.170 | 3.030 | 0.057 | 2.877 | 5.086 |
| C2H6/Pt-AlN | -0.091 | 3.537 | 0.001 | 1.926 | 5.256 |
| C6H6/Pt-AlN | -0.564 | 3.273 | 0.051 | 2.335 | 5.068 |
表2 本征AlN单层吸附C2H6和C6H6气体分子的吸附能(Ead)、吸附距离(d)、电荷转移(?Q)、带隙(Eg)和功函数(Φ)
Table 2 Adsorption energy (Ead), adsorption distance (d), charge transfer (?Q), band gap (Eg) and work function (Φ) of C2H6 and C6H6 gas molecules adsorbed by intrinsic AlN monolayer
| Ead/eV | d/Å | ∆Q/e | Eg/eV | ||
|---|---|---|---|---|---|
| C2H6/AlN | -0.184 | 2.990 | 0.022 | 2.897 | 5.238 |
| C6H6/AlN | -0.170 | 3.030 | 0.057 | 2.877 | 5.086 |
| C2H6/Pt-AlN | -0.091 | 3.537 | 0.001 | 1.926 | 5.256 |
| C6H6/Pt-AlN | -0.564 | 3.273 | 0.051 | 2.335 | 5.068 |
| Adsorption site | Adsorption configuration | Energy/eV | Adsorption site | Energy/eV |
|---|---|---|---|---|
| H | pi | -394.872 | TAl | -394.843 |
| pii | -395.074 | -394.872 | ||
| vi | -394.988 | -394.882 | ||
| PI | -430.931 | -430.615 | ||
| VI | -430.646 | -430.773 | ||
| VII | -430.546 | -430.525 | ||
| VIII | -430.788 | -430.688 | ||
| TN | pi | -394.802 | B | -394.768 |
| pii | -394.920 | -394.912 | ||
| vi | -394.870 | -394.843 | ||
| PI | -430.684 | -430.640 | ||
| VI | -430.750 | -430.702 | ||
| VII | -430.645 | -430.529 | ||
| VIII | -430.711 | -430.788 |
表3 Pt-AlN单层吸附C2H6和C6H6气体分子在不同位点及不同构型的能量
Table 3 Energy of C2H6 and C6H6 gas molecules adsorbed by Pt-AlN monolayer at different sites and configurations
| Adsorption site | Adsorption configuration | Energy/eV | Adsorption site | Energy/eV |
|---|---|---|---|---|
| H | pi | -394.872 | TAl | -394.843 |
| pii | -395.074 | -394.872 | ||
| vi | -394.988 | -394.882 | ||
| PI | -430.931 | -430.615 | ||
| VI | -430.646 | -430.773 | ||
| VII | -430.546 | -430.525 | ||
| VIII | -430.788 | -430.688 | ||
| TN | pi | -394.802 | B | -394.768 |
| pii | -394.920 | -394.912 | ||
| vi | -394.870 | -394.843 | ||
| PI | -430.684 | -430.640 | ||
| VI | -430.750 | -430.702 | ||
| VII | -430.645 | -430.529 | ||
| VIII | -430.711 | -430.788 |
| 1 | CAMINO-SÁNCHEZ F J, ZAFRA-GÓMEZ A, PÉREZ-TRUJILLO J P, et al. Validation of a GC-MS/MS method for simultaneous determination of 86 persistent organic pollutants in marine sediments by pressurized liquid extraction followed by stir bar sorptive extraction[J]. Chemosphere, 2011, 84(7): 869-881. |
| 2 | SRIVASTAVA M, SRIVASTAVA A. Cu decorated functionalized graphene for Arsenic sensing in water: a first principles analysis[J]. Applied Surface Science, 2021, 560: 149700. |
| 3 | CHANG Y Z, LIN J N, LI S D, et al. Adsorption of greenhouse gases (methane and carbon dioxide) on the pure and Pd-adsorbed stanene nanosheets: a theoretical study[J]. Surfaces and Interfaces, 2021, 22: 100878. |
| 4 | NI J M, YANG Z W, SHEN Y, et al. Volatile organic compounds gas molecule adsorption on Fe-MoS2 monolayer: the first-principles study[J]. Chemical Physics Letters, 2023, 813: 140298. |
| 5 | ZHAO W N, YUN N, DAI Z H, et al. A high-performance trace level acetone sensor using an indispensable V4C3T x MXene[J]. RSC Advances, 2020, 10(3): 1261-1270. |
| 6 | CASTRO NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162. |
| 7 | GILLGREN N, WICKRAMARATNE D, SHI Y M, et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures[J]. 2D Materials, 2015, 2(1): 011001. |
| 8 | CUI Z, WANG X, DING Y C, et al. Adsorption of CO, NH3, NO, and NO2 on pristine and defective g-GaN: improved gas sensing and functionalization[J]. Applied Surface Science, 2020, 530: 147275. |
| 9 | GUO Y H, ZHANG Y M, WU W X, et al. Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and their adsorption properties towards NO2: density functional theory study[J]. Applied Surface Science, 2018, 455: 106-114. |
| 10 | CHETTRI B, PATRA P K, HIEU N N, et al. Hexagonal boron nitride (h-BN) nanosheet as a potential hydrogen adsorption material: a density functional theory (DFT) study[J]. Surfaces and Interfaces, 2021, 24: 101043. |
| 11 | LOPES LIMA K A, RIBEIRO L A. A DFT study on the mechanical, electronic, thermodynamic, and optical properties of GaN and AlN counterparts of biphenylene network[J]. Materials Today Communications, 2023, 37: 107183. |
| 12 | ZHANG Y X, HOU Q Y. First-principles study of the effect of alkaline earth metal doping on the magnetic and photocatalytic properties of monolayer AlN: vn-Hi[J]. Applied Surface Science, 2023, 637: 157831. |
| 13 | WANG Y S, SONG N H, SONG X Y, et al. A first-principles study of gas adsorption on monolayer AlN sheet[J]. Vacuum, 2018, 147: 18-23. |
| 14 | TONNY I J, KHATUN M, ROY D, et al. A first-principles investigation of BF3 and ClF3 gas sensing on N-defected AlN nanosheets[J]. AIP Advances, 2024, 14(4): 045136. |
| 15 | HUSSEIN T A, ALAARAGE W K, ABDULHUSSEIN H A, et al. Ga-doped AlN monolayer nano-sheets as promising materials for environmental sensing applications[J]. Computational and Theoretical Chemistry, 2023, 1223: 114086. |
| 16 | FENG C, QIN H B, YANG D G, et al. First-principles investigation of the adsorption behaviors of CH2O on BN, AlN, GaN, InN, BP, and P monolayers[J]. Materials, 2019, 12(4): 676. |
| 17 | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. |
| 18 | KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
| 19 |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| 20 |
GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
PMID |
| 21 | TSIPAS P, KASSAVETIS S, TSOUTSOU D, et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)[J]. Applied Physics Letters, 2013, 103(25): 251605. |
| 22 | XIAO G, WANG L L, RONG Q Y, et al. A comparative study on magnetic properties of Mo doped AlN, GaN and InN monolayers from first-principles[J]. Physica B: Condensed Matter, 2017, 524: 47-52. |
| 23 | SHEN F G, WANG M, SU J, et al. Ab initio study on electronic structure and magnetism of AlN and InSe monolayer[J]. Physica B: Condensed Matter, 2024, 674: 415553. |
| 24 | QIU P L, QIN Y X, BAI Y N, et al. Gas selectivity regulation of monolayer SnS by introducing nonmetallic dopants: a combined theoretical and experimental investigation[J]. Applied Surface Science, 2021, 570: 151155. |
| [1] | 任雅琪, 王蕾, 李慧敏, 曲亚倩, 韩培卓, 陶绪堂. 甘草酸对一水合草酸钙结晶的抑制作用[J]. 人工晶体学报, 2025, 54(6): 1005-1012. |
| [2] | 牟涵清, 吕江维, 王鹏光, 余科彻, 高广宇, 张文君. 基于SBA-15介孔氧化硅递药系统的构建及提高茴拉西坦溶出度的研究[J]. 人工晶体学报, 2025, 54(6): 1013-1020. |
| [3] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [4] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [5] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [6] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [7] | 王子豪, 刘嘉钰, 董子豪, 王宇鑫, 许雅旭, 朱禹. 缺陷氨氟复合功能化UiO-66的制备及其青蒿琥酯吸附性能的研究[J]. 人工晶体学报, 2025, 54(5): 890-897. |
| [8] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [9] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [10] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [11] | 查显弧, 万玉喜, 张道华. β相氧化镓p型导电研究进展[J]. 人工晶体学报, 2025, 54(2): 177-189. |
| [12] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [13] | 莫秋燕, 张颂, 荆涛, 吴家隐. SO2和CO在ReS2表面吸附的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 107-114. |
| [14] | 张宁宁, 鱼海涛, 刘艳艳, 薛丹. 4d过渡金属掺杂单层WS2的电子结构和光学性质研究[J]. 人工晶体学报, 2025, 54(1): 77-84. |
| [15] | 王云杰, 和志豪, 丁家福, 苏欣. X2(PO4)2(X=Ba、Pb)和XPO4(X=Y、Bi)中阳离子对结构框架影响及双折射率来源研究[J]. 人工晶体学报, 2025, 54(1): 85-94. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS