Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (5): 832-840.DOI: 10.16553/j.cnki.issn1000-985x.2024.0313
• Research Articles • Previous Articles Next Articles
WEI Yuhua1(), CHEN Xinhua1(
), JIANG Shuai1, LI Xiaoshuang1, WANG Jianguang2
Received:
2024-12-12
Online:
2025-05-15
Published:
2025-05-28
CLC Number:
WEI Yuhua, CHEN Xinhua, JIANG Shuai, LI Xiaoshuang, WANG Jianguang. Bandgap Regulation Characteristics of Multi-Stable Metamaterial with Flexural Elastic Beams Structure[J]. Journal of Synthetic Crystals, 2025, 54(5): 832-840.
Parameter | a | d | L | t | b | l |
---|---|---|---|---|---|---|
Value/mm | 174.7 | 8.0 | 123.6 | 1.0 | 13.9 | 25.0 |
Table 1 Geometric parameters of metamaterial
Parameter | a | d | L | t | b | l |
---|---|---|---|---|---|---|
Value/mm | 174.7 | 8.0 | 123.6 | 1.0 | 13.9 | 25.0 |
Fig.5 Energy band structure analysis. (a) In-plane band structure of the tensile stable state; (b) in-plane band structure of the compressive stable state
Parameter | Energy band structure | Frequency response | ||
---|---|---|---|---|
Tensile stable state | Compressive stable state | Tensile stable state | Compressive stable state | |
First bandgap range/Hz | 51.42~72.53 | 56.17~81.53 | 54.5~74.1 | 57.7~82.5 |
Second bandgap range/Hz | 84.82~89.59 | 93.14~101.07 | 85.6~91.3 | 88.5~98.1 |
Third bandgap range/Hz | 118.85~174.69 | 113.51~204.07 | 118.9~177.3 | 105.3~198.1 |
Fourth bandgap range/Hz | 188.09~192.56 | 204.59~229.19 | 190.1~195.7 | 200.1~224.5 |
Table 2 Bandgap range
Parameter | Energy band structure | Frequency response | ||
---|---|---|---|---|
Tensile stable state | Compressive stable state | Tensile stable state | Compressive stable state | |
First bandgap range/Hz | 51.42~72.53 | 56.17~81.53 | 54.5~74.1 | 57.7~82.5 |
Second bandgap range/Hz | 84.82~89.59 | 93.14~101.07 | 85.6~91.3 | 88.5~98.1 |
Third bandgap range/Hz | 118.85~174.69 | 113.51~204.07 | 118.9~177.3 | 105.3~198.1 |
Fourth bandgap range/Hz | 188.09~192.56 | 204.59~229.19 | 190.1~195.7 | 200.1~224.5 |
Fig.7 Frequency response analysis. (a) Frequency response calculation model; (b) frequency response curve in the tensile stable state; (c) frequency response curve in the compressive stable state
Fig.9 Energy band structure analysis. (a)In-plane band structure of the three-dimensional tensile stable state; (b)in-plane band structure of the three-dimensional compressive stable state
1 |
LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
PMID |
2 | HUSSEIN M I, LEAMY M J, RUZZENE M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook[J]. Applied Mechanics Reviews, 2014, 66(4): 040802. |
3 | GUO Z K, JIANG S, SHEN Y J, et al. Nonlinear dynamic analysis and vibration reduction of two sandwich beams connected by a joint with clearance[J]. Mechanical Systems and Signal Processing, 2025, 223: 111828. |
4 | GUO Z K, WEN J Q, YU D W, et al. Widening the band gaps of hourglass lattice truss core sandwich structures for broadband vibration suppression[J]. Journal of Vibration and Acoustics, 2023, 145(6): 061002. |
5 | 陈新华, 张 晨, 陈 猛, 等. 分形凹角蜂窝结构声子晶体振动带隙特性[J]. 人工晶体学报, 2022, 51(8): 1343-1352+1360. |
CHEN X H, ZHANG C, CHEN M, et al. Vibration bandgap characteristics of phononic crystals with fractal concave angle honeycomb structure[J]. Journal of Synthetic Crystals, 2022, 51(8): 1343-1352+1360 (in Chinese). | |
6 | GUO Z K, WEI Y H, DONG T, et al. Ultra-low-frequency vibration attenuation characteristics of multi-span metamaterial dual-beam structures[J]. Mechanics of Solids, 2024, 59(1): 431-444. |
7 | HIRSEKORN M, DELSANTO P P, LEUNG A C, et al. Elastic wave propagation in locally resonant sonic material: comparison between local interaction simulation approach and modal analysis[J]. Journal of Applied Physics, 2006, 99(12): 124912. |
8 | WANG Y F, WANG Y Z, WU B, et al. Tunable and active phononic crystals and metamaterials[J]. Applied Mechanics Reviews, 2020, 72(4): 040801. |
9 | CHEN S, FAN Y C, FU Q H, et al. A review of tunable acoustic metamaterials[J]. Applied Sciences, 2018, 8(9): 1480. |
10 | SCHAEFFER M, RUZZENE M. Wave propagation in multistable magneto-elastic lattices[J]. International Journal of Solids and Structures, 2015, 56: 78-95. |
11 | PAL R K, RIMOLI J, RUZZENE M. Effect of large deformation pre-loads on the wave properties of hexagonal lattices[J]. Smart Materials and Structures, 2016, 25(5): 054010. |
12 | BERTOLDI K, BOYCE M C. Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations[J]. Physical Review B, 2008, 78(18): 184107. |
13 | SHI J H, MOFATTEH H, MIRABOLGHASEMI A, et al. Programmable multistable perforated shellular[J]. Advanced Materials, 2021, 33(42): 2102423. |
14 | ZHANG H, WU J, FANG D N, et al. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation[J]. Science Advances, 2021, 7(9): 1966. |
15 | PAL A, RESTREPO V, GOSWAMI D, et al. Exploiting mechanical instabilities in soft robotics: control, sensing, and actuation[J]. Advanced Materials, 2021, 33(19): 2006939. |
16 | SHAN S C, KANG S H, RANEY J R, et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials, 2015, 27(29): 4296-4301. |
17 | AKSOY B, SHEA H. Multistable shape programming of variable-stiffness electromagnetic devices[J]. Science Advances, 2022, 8(21): 543. |
18 | DENG B L, ZANATY M, FORTE A E, et al. Topological solitons make metamaterials crawl[J]. Physical Review Applied, 2022, 17: 014004. |
19 | CHEN T, PAULY M, REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386-390. |
20 |
RANEY J R, NADKARNI N, DARAIO C, et al. Stable propagation of mechanical signals in soft media using stored elastic energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35): 9722-9727.
DOI PMID |
21 |
FRENZEL T, FINDEISEN C, KADIC M, et al. Tailored buckling microlattices as reusable light-weight shock absorbers[J]. Advanced Materials, 2016, 28(28): 5865-5870.
DOI |
22 |
VASIOS N, DENG B L, GORISSEN B, et al. Universally bistable shells with nonzero Gaussian curvature for two-way transition waves[J]. Nature Communications, 2021, 12(1): 695.
DOI PMID |
23 | PAN F, LI Y L, LI Z Y, et al. 3D pixel mechanical metamaterials[J]. Advanced Materials, 2019, 31(25): 1900548. |
24 | WU S, ZE Q J, DAI J Z, et al. Stretchable origami robotic arm with omnidirectional bending and twisting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(36): e2110023118. |
25 | WU L L, XI X Q, LI B, et al. Multi-stable mechanical structural materials[J]. Advanced Engineering Materials, 2018, 20(2): 1700599. |
26 | FABER J A, UDANI J P, RILEY K S, et al. Dome-patterned metamaterial sheets[J]. Advanced Science, 2020, 7(22): 2001955. |
27 |
SONG Y P, PANAS R M, CHIZARI S, et al. Additively manufacturable micro-mechanical logic gates[J]. Nature Communications, 2019, 10(1): 882.
DOI PMID |
28 | MAO J J, WANG S, TAN W, et al. Modular multistable metamaterials with reprogrammable mechanical properties[J]. Engineering Structures, 2022, 272: 114976. |
29 | AULD B A, GREEN R E. Acoustic fields and waves in solids: two volumes[J]. Physics Today, 1974, 27(10): 63. |
30 | LI Z Y, MA T X, WANG Y Z, et al. Vibration isolation by novel meta-design of pyramid-core lattice sandwich structures[J]. Journal of Sound and Vibration, 2020, 480: 115377. |
31 | 黄子龙. 基于声学超材料缺陷态特性的低频振动能量回收研究[D]. 兰州: 兰州交通大学, 2024. |
HUANG Z L. Study on low frequency vibration energy recovery based on defect state characteristics of acoustic metamaterials[D]. Lanzhou: Lanzhou Jiatong University, 2024 (in Chinese). |
[1] | LI Xiaoshuang, JIANG Shuai, GUO Zhenkun. Flexural Waves Band Gap Analysis and Control in Metamaterial-Based Periodic Pipeline Systems [J]. Journal of Synthetic Crystals, 2025, 54(4): 589-597. |
[2] | LI Wenjing, TIAN Junhong, LI Rensheng, LI Jianing, SUN Xiaowei. Improving Low-Frequency Sound Transmission Loss of Double-Layer Panels with a Perforated Sandwich Structure with Porous Lining [J]. Journal of Synthetic Crystals, 2025, 54(4): 581-588. |
[3] | ZHU Xingjie, ZHANG Ping, ZUO Dunwen. Effect of Residual Stress and Electric Field on Indentation Hardness of 4H-SiC Surface [J]. Journal of Synthetic Crystals, 2025, 54(4): 560-568. |
[4] | CHEN Junhong, HU Jianwen, WEI Zhongming. Research Progress of Gallium Oxide Micro/Nano Structure-Based Detectors [J]. Journal of Synthetic Crystals, 2025, 54(3): 491-510. |
[5] | WANG Yuefei, GAO Chong, WU Zhe, LI Bingsheng, LIU Yichun. Study on the Epitaxial Growth of Gallium Oxide Heterostructure and UV Photodetector by Double Chamber Interconnected MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 426-437. |
[6] | CHEN Xuyang, LI Haobo, QIN Huayao, XU Mingyao, LU Yinmei, HE Yunbin. A Novel Suboxide Chemical Vapor Transport Technique for Cost-Effective Growth of β-Ga2O3 Thick Films [J]. Journal of Synthetic Crystals, 2025, 54(3): 445-451. |
[7] | HU Jichao, ZHAO Qiyang, YANG Zhihao, YANG Ying, PENG Bo, DING Xiongjie, LIU Wei, ZHANG Hong. Simulation Study on the Effect of Gallium Source Temperature on the Temperature Field in LPCVD Gallium Oxide Epitaxy [J]. Journal of Synthetic Crystals, 2025, 54(3): 452-461. |
[8] | YANG Wenjuan, BU Yuzhe, SAI Qinglin, QI Hongji. Dislocation Defects and Their Distribution Characteristics in Ga2O3 Crystal Grown by Edge-Defined Film-Fed Growth Method [J]. Journal of Synthetic Crystals, 2025, 54(3): 414-419. |
[9] | YAN Yuchao, WANG Cheng, LU Changcheng, LIU Yingying, XIA Ning, JIN Zhu, ZHANG Hui, YANG Deren. Growth of 2-Inch Fe-Doped β-Ga2O3 Single Crystal with High Resistance and Properties of (010) Substrates [J]. Journal of Synthetic Crystals, 2025, 54(2): 197-201. |
[10] | XIE Yinfei, HE Yang, LIU Weiye, XU Wenhui, YOU Tiangui, OU Xin, GUO Huaixin, SUN Huarui. Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices [J]. Journal of Synthetic Crystals, 2025, 54(2): 290-311. |
[11] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
[12] | SHAO Shuangyao, YANG Shuo, FENG Huayu, JIA Zhitai, TAO Xutang. Research Progress of Gallium Oxide Avalanche Photodetectors [J]. Journal of Synthetic Crystals, 2025, 54(2): 276-289. |
[13] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
[14] | LEI Shasha, GONG Qiaorui, ZHAO Chengchun, SUN Xiaohui, HANG Yin. Research Progress of Wide Bandgap Semiconductor ZnGa2O4 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1289-1301. |
[15] | TAN Huiying, XING Xu, GE Peiqi, BI Wenbo. Simulation Analysis and Experimental Research on the Fracture Strength of Photovoltaic Monocrystalline Silicon Slicing Wafers [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(8): 1369-1377. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||