Journal of Synthetic Crystals ›› 2026, Vol. 55 ›› Issue (1): 128-141.DOI: 10.16553/j.cnki.issn1000-985x.2025.0185
• Research Articles • Previous Articles Next Articles
KONG Jiaxu(
), LIN Xueling(
), PAN Fengchun
Received:2025-08-25
Online:2026-01-20
Published:2026-02-05
Contact:
LIN Xueling
CLC Number:
KONG Jiaxu, LIN Xueling, PAN Fengchun. Theoretical Study on Influence of Shear Strain on Electronic Structure and Optical Properties of Mn Doped MoS2[J]. Journal of Synthetic Crystals, 2026, 55(1): 128-141.
Fig.1 Structure diagram of crystal structure. (a) Vertical(top) and side(bottom) views of MoS2 supercell structure; (b) point taking path in first Brillouin zone; (c) triangular prism structure formed by six nearest neighboring S atoms around doped Mn atom
| Shear strain/% | -4 | -2 | 0 | 2 | 4 |
|---|---|---|---|---|---|
| Volume/Å3 | 14.53 | 12.57 | 12.23 | 12.13 | 11.75 |
| Band gap/eV | 0.42 | 0.44 | 0.45 | 0.63 | 0.90 |
Table 1 Volume of triangular prisms and band gap of MnMo system under different shear strains
| Shear strain/% | -4 | -2 | 0 | 2 | 4 |
|---|---|---|---|---|---|
| Volume/Å3 | 14.53 | 12.57 | 12.23 | 12.13 | 11.75 |
| Band gap/eV | 0.42 | 0.44 | 0.45 | 0.63 | 0.90 |
| Shear strain/% | Bond | Bond population value | Bond length/nm | q* |
|---|---|---|---|---|
| -4 | Mn—S1(S4) | 0.04 | 0.238 | 3.99 |
| Mn—S2(S5) | 0.01 | 0.268 | 4.00 | |
| Mn—S3(S6) | 0.06 | 0.232 | 3.97 | |
| -2 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.236 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 0 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.230 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 2 | Mn—S1(S4) | 0.08 | 0.232 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.232 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.231 | 3.95 | |
| 4 | Mn—S1(S4) | 0.08 | 0.230 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.230 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.230 | 3.95 |
Table 2 Bond population value, bond length and effective charge q* of doped Mn atom under different shear strains
| Shear strain/% | Bond | Bond population value | Bond length/nm | q* |
|---|---|---|---|---|
| -4 | Mn—S1(S4) | 0.04 | 0.238 | 3.99 |
| Mn—S2(S5) | 0.01 | 0.268 | 4.00 | |
| Mn—S3(S6) | 0.06 | 0.232 | 3.97 | |
| -2 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.236 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 0 | Mn—S1(S4) | 0.07 | 0.234 | 3.96 |
| Mn—S2(S5) | 0.07 | 0.230 | 3.96 | |
| Mn—S3(S6) | 0.07 | 0.234 | 3.96 | |
| 2 | Mn—S1(S4) | 0.08 | 0.232 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.232 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.231 | 3.95 | |
| 4 | Mn—S1(S4) | 0.08 | 0.230 | 3.95 |
| Mn—S2(S5) | 0.08 | 0.230 | 3.95 | |
| Mn—S3(S6) | 0.08 | 0.230 | 3.95 |
| [1] | ULMER U, DINGLE T, DUCHESNE P N, et al. Fundamentals and applications of photocatalytic CO2 methanation[J]. Nature Communications, 2019, 10(1): 3169. |
| [2] | SCHLOEGL R. Fuel for thought[J]. Nature Materials, 2008, 7(10): 772-774. |
| [3] | WU H, TAN H L, TOE C Y, et al. Photocatalytic and photoelectrochemical systems: similarities and differences[J]. Advanced Materials,2020, 32(18): 1904717. |
| [4] | HITOKI G, ISHIKAWA A, TAKATA T, et al. Ta3N5 as a novel visible light-driven photocatalyst (λ<600 nm)[J]. ChemInform, 2002, 33(45): 7. |
| [5] | FUJISHIMA A, ZHANG X T, TRYK D A. TiO2 photocatalysis and related surface phenomena[J]. Surface Science Reports, 2008, 63(12): 515-582. |
| [6] | THOMPSON T L, YATES J TJR. Surface science studies of the photoactivation of TiO2: new photochemical processes[J]. Chemical Reviews, 2006, 106(10): 4428-4453. |
| [7] | MARTIN D J, UMEZAWA N, CHEN X W, et al. Facet engineered Ag3PO4 for efficient water photooxidation[J]. Energy & Environmental Science, 2013, 6(11): 3380-3386. |
| [8] | LI R G, ZHANG F X, WANG D E, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4 [J]. Nature Communications, 2013, 4: 1432. |
| [9] | KAMAT P V. Semiconductor surface chemistry as holy grail in photocatalysis and photovoltaics[J]. Accounts of Chemical Research, 2017, 50(3): 527-531. |
| [10] | WU Y A, MCNULTY I, LIU C, et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2019, 4(11): 957-968. |
| [11] | LIU W, ZHANG H X, LI C M, et al. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting[J]. Journal of Energy Chemistry, 2020, 47: 333-345. |
| [12] | PAN Y, CHEN S, JIA Y L. First-principles investigation of phonon dynamics and electrochemical performance of TiO2- x oxides lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6207-6216. |
| [13] | CHEN S, PAN Y. Noble metal interlayer-doping enhances the catalytic activity of 2H-MoS2 from first-principles investigations[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21040-21049. |
| [14] | DOMEN K, KUDO A, SHINOZAKI A, et al. Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts[J]. Journal of the Chemical Society, Chemical Communications, 1986(4): 356. |
| [15] | JLIDI Z, BAACHAOUI S, RAOUAFI N, et al. Temperature effect on structural,morphological and optical properties of 2D-MoS2 layers: an experimental and theoretical study[J]. Optik, 2021, 228: 166166. |
| [16] | KUDO A, TANAKA A, DOMEN K, et al. Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst[J]. Journal of Catalysis, 1988, 111(1): 67-76. |
| [17] | YANG B, WANG Z W, ZHAO J J, et al. 1D/2D carbon-doped nanowire/ultra-thin nanosheet g-C3N4 isotype heterojunction for effective and durable photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2021, 46(50): 25436-25447. |
| [18] | TYE C T, SMITH K J. Hydrodesulfurization of dibenzothiophene over exfoliated MoS2 catalyst[J]. Catalysis Today, 2006, 116(4): 461-468. |
| [19] | PERKINS F K, FRIEDMAN A L, COBAS E, et al. Chemical vapor sensing with monolayer MoS2 [J]. Nano Letters, 2013, 13(2): 668-673. |
| [20] | TANAKA H, OKUMIYA T, UEDA S K, et al. Preparation of nanosheet by exfoliation of layered iron phenyl phosphate under ultrasonic irradiation[J]. Materials Research Bulletin, 2009, 44(2): 328-333. |
| [21] | LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2 [J]. Nature Nanotechnology, 2013, 8(7): 497-501. |
| [22] | MCDONNELL S, ADDOU R, BUIE C, et al. Defect-dominated doping and contact resistance in MoS2 [J]. ACS Nano, 2014, 8(3): 2880-2888. |
| [23] | ROY K, PADMANABHAN M, GOSWAMI S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology, 2013, 8(11): 826-830. |
| [24] | CHENG R Q, WANG F, YIN L, et al. High-performance,multifunctional devices based on asymmetric van der Waals heterostructures[J]. Nature Electronics, 2018, 1(6): 356-361. |
| [25] | CHENG R, LI D H, ZHOU H L, et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes[J]. Nano Letters, 2014, 14(10): 5590-5597. |
| [26] | DENG Y X, LUO Z, CONRAD N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode[J]. ACS Nano, 2014, 8(8): 8292-8299. |
| [27] | FURCHI M M, POSPISCHIL A, LIBISCH F, et al. Photovoltaic effect in an electrically tunable van der waals heterojunction[J]. Nano Letters,2014, 14(8): 4785-4791. |
| [28] | LV R T, TERRONES H, ELÍAS A L, et al. Two-dimensional transition metal dichalcogenides: clusters,ribbons,sheets and more[J]. Nano Today, 2015, 10(5): 559-592. |
| [29] | HONG J H, JIN C H, YUAN J, et al. Atomic defects in two-dimensional materials: from single-atom spectroscopy to functionalities in opto-/ electronics,nanomagnetism,and catalysis[J]. Advanced Materials, 2017, 29(14): 1606434. |
| [30] | LI H, TSAI C, KOH A L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies[J]. Nature Materials, 2016, 15(1): 48-53. |
| [31] | NOH J Y, KIM H, KIM Y S. Stability and electronic structures of native defects in single-layer MoS2 [J]. Physical Review B, 2014, 89(20): 205417. |
| [32] | PARK J H, SANNE A, GUO Y Z, et al. Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface[J]. Science Advances, 2017, 3(10): e1701661. |
| [33] | REN X P, MA Q, FAN H B, et al. A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction[J]. Chemical Communications, 2015, 51(88): 15997-16000. |
| [34] | DOLUI K, RUNGGER I, PEMMARAJU CDAS, et al. Possible doping strategies for MoS2 monolayers: an ab initio study[J]. Physical Review B, 2013, 88(7): 075420. |
| [35] | MA X Y, LI J Q, AN C H, et al. Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production[J]. Nano Research, 2016, 9(8): 2284-2293. |
| [36] | ZHANG H Y, TIAN Y, ZHAO J X, et al. Small dopants make big differences: enhanced electrocatalytic performance of MoS2 monolayer for oxygen reduction reaction (ORR) by N- and P-doping[J]. Electrochimica Acta, 2017, 225: 543-550. |
| [37] | HUANG H, FENG X, DU C C, et al. High-quality phosphorus-doped MoS2 ultrathin nanosheets with amenable ORR catalytic activity[J]. Chemical Communications, 2015, 51(37): 7903-7906. |
| [38] | QIN C B, GAO Y, QIAO Z X, et al. Atomic-layered MoS2 as a tunable optical platform[J]. Advanced Optical Materials, 2016, 4(10): 1429-1456. |
| [39] | KIM H J, SONG Y W, NAMGUNG S D, et al. Optical properties of the crumpled pattern of selectively layered MoS2 [J]. Optics Letters, 2018, 43(19): 4590-4593. |
| [40] | WANG C Y, LI S R, WANG S F, et al. First principles study of the effect of uniaxial strain on monolayer MoS2 [J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144: 115401. |
| [41] | GAO X W, WANG Y, SU Q, et al. Electronic and optical properties of strain-regulated O-doped monolayer MoS2 [J]. Modern Physics Letters B, 2024, 38(23): 2450200. |
| [42] | CHOI S M, JHI S H, SON Y W. Controlling energy gap of bilayer graphene by strain[J]. Nano Letters, 2010, 10(9): 3486-3489. |
| [43] | 朱丽雯, 舒龙龙, 梁任宏, 等. 具有大应变梯度的柔性SrRuO3褶皱薄膜的设计[J]. 宁夏大学学报(自然科学版), 2024, 45(2): 203-208. |
| ZHU L W, SHU L L, LIANG R H, et al. Design of flexible SrRuO3 wrinkled films with strain gradient[J]. Journal of Ningxia University (Natural Science Edition), 2024, 45(2): 203-208 (in Chinese). | |
| [44] | CHOUDHARY M, SHITAL S, YA’AKOBOVITZ A, et al. Shear strain bandgap tuning of monolayer MoS2 [J]. Applied Physics Letters, 2020, 117(22): 223102. |
| [45] | ZHOU C, LIU Z J, DOU X L, et al. Effect of strain on lattice thermal conductivity of diamond[J]. Vacuum, 2025, 233: 113935. |
| [46] | ADELSBERGER C, BOSCO S, KLINOVAJA J, et al. Valley-free silicon fins caused by shear strain[J]. Physical Review Letters, 2024, 133(3): 037001. |
| [47] | ZHAO Y S, YANG L, WEI X B, et al. Tuning the photoelectric properties of ZrS2/ZrSe2 heterojunction via shear strain and electric field[J]. Chemical Physics, 2025,589: 112518. |
| [48] | FANG Y Q, PAN J, HE J Q, et al. Structure re-determination and superconductivity observation of bulk 1T MoS2 [J]. Angewandte Chemie International Edition, 2018, 57(5): 1232-1235. |
| [49] | PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244-13249. |
| [50] | MAK K F, LEE C G, HONE J, et al. Atomically Thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. |
| [51] | ZHU Z Y, CHENG Y C, SCHWINGENSCHLÖGL U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors[J]. Physical Review B, 2011, 84(15): 153402. |
| [52] | FTHENAKIS Z G, MENON M. Unusual phase transition mechanism induced by shear strain in Si2BN planar structures and comparison with graphene: an ab initio DFT study[J]. Physical Chemistry Chemical Physics, 2025, 27(7): 3552-3557. |
| [53] | RUIZ-CIGARRILLO O, FLORES-RANGEL G, ZAVALA-MORAN U, et al. Optical properties of 2D GeTe under strain: a DFT study[J]. AIP Advances, 2025,15(1): 015135. |
| [54] | CHADI D J. Special points for Brillouin-zone integrations[J]. Physical Review B, 1977, 16(4): 1746-1747. |
| [55] | PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations: a reply[J]. Physical Review B, 1977, 16(4): 1748-1749. |
| [56] | KADANTSEV E S, HAWRYLAK P. Electronic structure of a single MoS2 monolayer[J]. Solid State Communications, 2012, 152(10): 909-913. |
| [57] | KUC A, ZIBOUCHE N, HEINE T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2 [J]. Physical Review B, 2011, 83(24): 245213. |
| [58] | PAN F C, LAN W J, LI H X, et al. Strain-induced magnetic coupling oscillations in Mn doped monolayer 2H-MoS2 [J]. Physica B: Condensed Matter, 2025, 699: 416847. |
| [59] | CHENG Y C, ZHANG Q Y, SCHWINGENSCHLÖGL U. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides[J]. Physical Review B, 2014, 89(15): 155429. |
| [60] | HOU B W, ZHANG Y M, ZHANG H, et al. Room temperature bound excitons and strain-tunable carrier mobilities in Janus monolayer transition-metal dichalcogenides[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3116-3128. |
| [61] | CIANCI S, BLUNDO E, TUZI F, et al. Strain engineering of the transition metal dichalcogenide chalcogen-alloy WSSe[J]. Journal of Applied Physics, 2024, 135(24): 244304. |
| [62] | WAKABAYASHI Y K, KOBAYASHI M, SEKI Y, et al. SrRuO3 under tensile strain: thickness-dependent electronic and magnetic properties[J]. Journal of Applied Physics, 2024, 136(4): 043907. |
| [63] | 洪欣欣, 何力军, 代彦明, 等. 残余应力、晶粒尺寸对铍纳米压入行为影响的数值分析[J]. 宁夏大学学报(自然科学版), 2024, 45(1): 31-35. |
| HONG X X, HE L J, DAI Y M, et al. Numerical analysis of the influence of residual stress and grain size on the indentation behavior of beryllium[J]. Journal of Ningxia University (Natural Science Edition), 2024, 45(1): 31-35 (in Chinese). | |
| [64] | 黄 昆. 固体物理学[M]. 1版. 北京: 高等教育出版社, 1988. |
| HUANG K. Solid state physics[M]. 1 st ed. Beijing: Higher Education Press, 1988 (in Chinese). | |
| [65] | 张家琪, 林雪玲, 田文虎, 等. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| ZHANG J Q, LIN X L, TIAN W H, et al. Effect of strain on optical properties of Si doped A-TiO2 studied by the first-principles[J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628 (in Chinese). | |
| [66] | 张 燕, 张 洁, 颜 安,等. 应变调控单层2H-MoS2的能带结构和光学性质[J]. 中南民族大学学报(自然科学版), 2023, 42(2): 208-215. |
| ZHANG Y, ZHANG J, YAN A, et al. Band structure and optical properties of monolayer 2H-MoS2 tuned by strain[J]. Journal of South-Central Minzu University (Natural Science Edition), 2023, 42(2): 208-215 (in Chinese). | |
| [67] | ZHENG H L, YANG B S, WANG D D, et al. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain[J]. Applied Physics Letters, 2014, 104(13): 132403. |
| [68] | MIN S L, LI Y, QU Z Y, et al. Room-temperature ferromagnetism of chromium-doped molybdenum disulfide synthesized via chemical vapor deposition[J]. Journal of Applied Physics, 2025, 137(2): 024302. |
| [1] | LIANG Yongfu, YANG Yuping, CHENG Xuerui. Optical Properties of All-Inorganic Perovskite Cesium Tin Bromide [J]. Journal of Synthetic Crystals, 2026, 55(1): 103-110. |
| [2] | YANG Jiwei, DONG Ling, GU Dong, XU Huarui, ZHAO Yunyun, YANG Tao, LI Haiping, LI Jie, ZHU Guisheng. Thickness-Dependent Study of Infrared-Visible Compatible Stealth in Transparent Conductive Thin Films [J]. Journal of Synthetic Crystals, 2025, 54(9): 1614-1621. |
| [3] | YAO Hanyu, CHEN Kai, YI Yuwei, ZHOU Yanqi, LI Shuang, TANG Quntao. Effects of Heat Treatment Temperature and Er Doping Amount on Photoelectric Properties of Nickel Oxide Thin Films [J]. Journal of Synthetic Crystals, 2025, 54(9): 1622-1632. |
| [4] | XIAO Jiexiang, YANG Chaopu, WANG Jianfeng, ZHANG Yumin, YI Juemin, XU Ke. Polarization and Temperature Dependence of Low-Temperature Photoluminescence Spectra in Fe-Doped GaN Crystals [J]. Journal of Synthetic Crystals, 2025, 54(8): 1410-1416. |
| [5] | DOU Ying, WANG Yingmin, GAO Yanzhao, CHENG Hongjuan. Impact of Selenium Addition on Electrical and Optical Properties of CdSe Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(8): 1403-1409. |
| [6] | CHEN Sixian, XU Le, TANG Yuanzhi, SUN Haibin, GUO Xue, FENG Yurun, HU Qiangqiang. Growth and Optical Properties Modulation of I- Doped Cs3Bi2Br9 Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1282-1288. |
| [7] | REN Longjun, CAI Shihu, WANG Fuyuan, JIANG Ping. Prediction of Monolayer C2B6 with Ultra-High Carrier Mobility [J]. Journal of Synthetic Crystals, 2025, 54(5): 850-856. |
| [8] | CUI Jian, HE Zhihao, DING Jiafu, WANG Yunjie, WAN Fuhong, LI Jiajun, SU Xin. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration [J]. Journal of Synthetic Crystals, 2025, 54(5): 841-849. |
| [9] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
| [10] | LI Pengcheng, ZHOU Jun, WANG Weigang, WU Kunyao, LI Zhao. Preparation of Li2Mg3TiO6:Eu3+ Red Phosphors and Its Application in White LED [J]. Journal of Synthetic Crystals, 2025, 54(4): 643-651. |
| [11] | ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles [J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628. |
| [12] | JIA Mengjiang, HUANG Wenqi, WANG Hai, ZHENG Jun. First-Principles Study of Non-Substitutional Point Defects in Germanium-Lead Alloys [J]. Journal of Synthetic Crystals, 2025, 54(12): 2164-2172. |
| [13] | LIN Ke, ZHANG Yaxin, WU Wenjie, LI Lin, LIN Changlang, ZENG Huangjun, NIE Haiyu, LI Zhiqiang, ZHANG Ge, LI Zhen, ZHANG Peixiong, CHEN Weidong, CHEN Zhenqiang. Spectroscopic Gain Bandwidth Modulation and Laser Performance of Ytterbium-Doped Mixed Crystals [J]. Journal of Synthetic Crystals, 2025, 54(10): 1849-1857. |
| [14] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [15] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS