Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (8): 1441-1453.DOI: 10.16553/j.cnki.issn1000-985x.2025.0035
• Research Articles • Previous Articles Next Articles
QIN Jilong1(
), LI Xiangyuan2, ZHANG Lulu1,3, LIU Jianxin1, LI Rui1,2(
)
Received:2025-02-24
Online:2025-08-20
Published:2025-09-01
CLC Number:
QIN Jilong, LI Xiangyuan, ZHANG Lulu, LIU Jianxin, LI Rui. First-Principles Study on Oxidation of Methane to Methanol Catalyzed by Non-Stoichiometric Tungsten Oxide (WO3-x)[J]. Journal of Synthetic Crystals, 2025, 54(8): 1441-1453.
| Surface energy, γ/(eV·Å-2) | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| WO term | 0.030 4 | 0.045 7 | 0.060 2 | 0.077 2 | 0.079 8 | 0.080 9 |
| O term | 0.084 8 | 0.102 3 | 0.112 5 | 0.081 2 | 0.082 7 | 0.123 9 |
Table 1 Surface energy parameters for two terms of WO3-x
| Surface energy, γ/(eV·Å-2) | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| WO term | 0.030 4 | 0.045 7 | 0.060 2 | 0.077 2 | 0.079 8 | 0.080 9 |
| O term | 0.084 8 | 0.102 3 | 0.112 5 | 0.081 2 | 0.082 7 | 0.123 9 |
| Parameter | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| Eads/eV | -0.460 0 | -0.211 0 | -1.001 0 | -0.461 0 | -0.515 0 | -0.348 0 |
| d(C—H)/Å | 1.095 8 | 1.096 1 | 1.101 2 | 1.098 6 | 1.097 7 | 1.101 3 |
| d/Å | 2.652 0 | 2.787 0 | 2.134 3 | 2.664 0 | 2.592 0 | 2.750 3 |
Table 2 Adsorption energy and structural parameters of CH4 on the WO3-x surface
| Parameter | WO3 | WO2.9 | WO2.72 | WO2.67 | WO2.63 | WO2 |
|---|---|---|---|---|---|---|
| Eads/eV | -0.460 0 | -0.211 0 | -1.001 0 | -0.461 0 | -0.515 0 | -0.348 0 |
| d(C—H)/Å | 1.095 8 | 1.096 1 | 1.101 2 | 1.098 6 | 1.097 7 | 1.101 3 |
| d/Å | 2.652 0 | 2.787 0 | 2.134 3 | 2.664 0 | 2.592 0 | 2.750 3 |
Fig.9 Charge density difference and Bader charge of methane adsorbed on the catalyst surface (the equivalent surface of CDD is 0.000 15 eV/?3, yellow and blue colors represent the electron accumulation and electron loss regions, respectively)
| [1] |
程春晖, 明淑君, 庞 磊, 等. 基于煤层气甲烷富集的固体多孔材料研究进展[J]. 化工进展, 2024, 43(11): 6215-6232.
DOI |
|
CHENG C H, MING S J, PANG L, et al. Developments in solid porous materials for methane enrichment in coalbed gas[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6215-6232 (in Chinese).
DOI |
|
| [2] | 张志刚, 霍春秀. 煤矿区煤层气利用技术研究进展[J]. 矿业安全与环保, 2022, 49(4): 59-64. |
| ZHANG Z G, HUO C X. Research progress of CBM utilization technology in mining areas[J]. Mining Safety & Environmental Protection, 2022, 49(4): 59-64 (in Chinese). | |
| [3] | 郭昊乾, 李小亮, 白洪灏, 等. 复合床低浓度煤层气变压吸附分离性能[J]. 洁净煤技术, 2023, 29(增刊2): 574-579. |
| GUO H Q, LI X L, BAI H H, et al. Pressure swing adsorption separation performance of low concentration coalbed methane in composite bed[J]. Clean Coal Technology, 2023, 29(supplyment 2): 574-579 (in Chinese). | |
| [4] | LI X Y, XIE J J, RAO H, et al. Platinum- and CuO x -decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor[J]. Angewandte Chemie International Edition, 2020, 59(44): 19702-19707. |
| [5] | WU X Y, ZENG Y, LIU H C, et al. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm)[J]. Nano Research, 2021, 14(12): 4584-4590. |
| [6] | ZHU S, LI X, PAN Z, et al. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature[J]. Nano Letters, 2021, 21(9): 4122-4128. |
| [7] | SONG H, MENG X G, WANG S Y, et al. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide[J]. ACS catalysis, 2020, 10(23): 14318-14326.. |
| [8] | SONG H, MENG X G, WANG S Y, et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. Journal of the American Chemical Society, 2019, 141(51): 20507-20515. |
| [9] | SHI S L, SUN Z X, BAO C Y, et al. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H2O2[J]. International Journal of Energy Research, 2020, 44(4): 2740-2753. |
| [10] | ZAKARIA Z, KAMARUDIN S K. Direct conversion technologies of methane to methanol: an overview[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 250-261. |
| [11] | PAIK T, CARGNELLO M, GORDON T R, et al. Photocatalytic hydrogen evolution from substoichiometric colloidal WO3- x nanowires[J]. ACS Energy Letters, 2018, 3(8): 1904-1910. |
| [12] | YANG J, CHEN P Y, DAI J, et al. Solar-energy-driven conversion of oxygen-bearing low-concentration coal mine methane into methanol on full-spectrum-responsive WO3- x catalysts[J]. Energy Conversion and Management, 2021, 247: 114767. |
| [13] |
LUO L H, LUO J, LI H L, et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts[J]. Nature Communications, 2021, 12(1): 1218.
DOI PMID |
| [14] | AN B, LI Z, WANG Z, et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site[J]. Nature Materials, 2022, 21(8): 932-938. |
| [15] |
KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, 1993, 47(1): 558-561.
DOI PMID |
| [16] |
BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
DOI PMID |
| [17] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [18] | PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687. |
| [19] | GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
| [20] | DUDAREV S L, BOTTON G A, SAVRASOV S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509. |
| [21] | HAJIAHMADI Z, AZAR Y T. Computational study of h-WO3 surfaces as a semiconductor in water-splitting application[J]. Surfaces and Interfaces, 2022, 28: 101695. |
| [22] | HURTADO-AULAR O, VIDAL A B, SIERRAALTA A, et al. Periodic DFT study of water adsorption on m-WO3(001), m-WO3(100), h-WO3(001) and h-WO3(100). Role of hydroxyl groups on the stability of polar hexagonal surfaces[J]. Surface Science, 2020, 694: 121558. |
| [23] | AZAR Y T, PAYAMI M. First-principles calculation of electronic energy level alignment at electrochemical interfaces[J]. Applied Surface Science, 2017, 412: 335-341. |
| [24] | JAIN A, ONG S P, HAUTIER G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation[J]. APL Materials, 2013, 1(1): 011002. |
| [25] | MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276. |
| [26] | WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| [27] | NELSON R, ERTURAL C, GEORGE J, et al. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory[J]. Journal of Computational Chemistry, 2020, 41(21): 1931-1940. |
| [28] | SHETTY M, BUESSER B, ROMÁN-LESHKOV Y, et al. Computational investigation on hydrodeoxygenation (HDO) of acetone to propylene on α-MoO3 (010) surface[J]. The Journal of Physical Chemistry C, 2017, 121(33): 17848-17855. |
| [29] | JIANG P G, WANG Z B, YAN Y B, et al. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface[J]. Acta Physica Sinica, 2017, 66(24): 246801. |
| [30] |
LI Q, RELLÁN-PIÑEIRO M, ALMORA-BARRIOS N, et al. Shape control in concave metal nanoparticles by etching[J]. Nanoscale, 2017, 9(35): 13089-13094.
DOI PMID |
| [31] | KAHN A. Fermi level, work function and vacuum level[J]. Materials Horizons, 2016, 3(1): 7-10. |
| [32] | LIU X M, WEI Z P, LIU J L, et al. Oxidization of Al0.5Ga0.5As(001) surface: the electronic properties[J]. Applied Surface Science, 2018, 436: 460-466. |
| [33] | FANG Z, SHANG M H, HOU X M, et al. Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping[J]. Nano Energy, 2019, 61: 389-396. |
| [34] | ZHAI R C, DENG C B, DU S L, et al. A DFT study of CH4 adsorption on OMS-2 (110) surface with different types of oxygen vacancies[J]. Chemical Physics, 2023, 564: 111708. |
| [35] | ZHENG K, WU Y, ZHU J C, et al. Room-temperature photooxidation of CH4 to CH3OH with nearly 100% selectivity over hetero-ZnO/Fe2O3 porous nanosheets[J]. Journal of the American Chemical Society, 2022, 144(27): 12357-12366. |
| [36] | ZENG Y, TANG Z Y, WU X Y, et al. Photocatalytic oxidation of methane to methanol by tungsten trioxide-supported atomic gold at room temperature[J]. Applied Catalysis B: Environmental, 2022, 306: 120919. |
| [37] | HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354-360. |
| [38] |
LIU X, JIAO Y, ZHENG Y, et al. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts[J]. Journal of the American Chemical Society, 2019, 141(24): 9664-9672.
DOI PMID |
| [39] | HE M C, ZHAO J. Methane adsorption on graphite(0001) films: a first-principles study[J]. Chinese Physics B, 2013, 22(1): 016802. |
| [40] | LIN L, HUANG J T, YU W Y, et al. A periodic DFT study on adsorption of small molecules (CH4, CO, H2O, H2S, NH3) on the WO3 (001) surface-supported Au[J]. Communications in Theoretical Physics, 2020, 72(3): 035501. |
| [41] |
CHENG L, CHEN X N, HU P, et al. Advantages and limitations of hydrogen peroxide for direct oxidation of methane to methanol at mono-copper active sites in Cu-exchanged zeolites[J]. Chinese Journal of Catalysis, 2023, 51: 135-144.
DOI |
| [1] | WANG Chun, WANG Kun, SONG Xiangman, REN Lin, ZHANG Hao. First-Principles Study on the Electrical Properties of Co-Doped β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(8): 1426-1432. |
| [2] | MO Qiuyan, WU Jiayin, JING Tao. First-Principle Study on the Gas Sensing Properties of C2H6 and C6H6 with Pt Modified AlN Monolayer [J]. Journal of Synthetic Crystals, 2025, 54(6): 1050-1060. |
| [3] | LIU Jingsong, SHEN Lu, REN Longjun, HUANG Xizhong. Controlling Hydrogen Evolution Reaction of Janus MoSSe by Defect and Strain Engineering [J]. Journal of Synthetic Crystals, 2025, 54(6): 1034-1041. |
| [4] | REN Longjun, CAI Shihu, WANG Fuyuan, JIANG Ping. Prediction of Monolayer C2B6 with Ultra-High Carrier Mobility [J]. Journal of Synthetic Crystals, 2025, 54(5): 850-856. |
| [5] | CUI Jian, HE Zhihao, DING Jiafu, WANG Yunjie, WAN Fuhong, LI Jiajun, SU Xin. First-Principles Study on the Relationship Between Structure and Properties of Tungstate with d10 Electron Configuration [J]. Journal of Synthetic Crystals, 2025, 54(5): 841-849. |
| [6] | XIE You, XIAO Xiaosa, JIANG Ningning, ZHANG Tao. Electrical Transport Properties of Two-Dimensional BC6N/BN Lateral Heterostructure [J]. Journal of Synthetic Crystals, 2025, 54(5): 825-831. |
| [7] | MIN Yueqi, XIE Wenqin, XIE Liang, AN Kang. Optoelectronic Properties of CsPbX3 (X=Cl, Br, I) Regulated by Pd Doping [J]. Journal of Synthetic Crystals, 2025, 54(4): 605-616. |
| [8] | ZHANG Jiaqi, LIN Xueling, TIAN Wenhu, MA Wenjie, ZHANG Xiu, MA Xiaowei, ZHU Qiaoping, HAO Rui, PAN Fengchun. Effect of Strain on Optical Properties of Si Doped A-TiO2 Studied by the First-Principles [J]. Journal of Synthetic Crystals, 2025, 54(4): 617-628. |
| [9] | LI Qi, FU Bo, YU Bowen, ZHAO Hao, LIN Na, JIA Zhitai, ZHAO Xian, TAO Xutang. First-Principle Study on the Interaction Between Al/In Doping and (100) Twins in β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(3): 371-377. |
| [10] | GUO Manyi, WU Jiaxing, YANG Fan, WANG Chao, WANG Yanjie, CHI Yaodan, YANG Xiaotian. First-Principle Study of ε-Ga2O3 Crystal and Its Intrinsic Defects [J]. Journal of Synthetic Crystals, 2025, 54(2): 212-218. |
| [11] | MO Qiuyan, ZHANG Song, JING Tao, WU Jiayin. First-Principles Study on the Adsorption of SO2 and CO on ReS2 Surface [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 107-114. |
| [12] | ZHANG Ningning, YU Haitao, LIU Yanyan, XUE Dan. Electronic Structure and Optical Property of 4d Transition Metal Doped Monolayer WS2 [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 77-84. |
| [13] | WANG Yunjie, HE Zhihao, DING Jiafu, SU Xin. Influence of Cations on the Structural Framework and the Origin of Birefringence in X2(PO4)2 (X=Ba, Pb) and XPO4 (X=Y, Bi) [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 85-94. |
| [14] | DING Jiafu, HE Zhihao, WANG Yunjie, SU Xin. First-Principles Study on the Regulation of Optical Properties of Gallium, Indium, and Thallium Phosphates Through Sulfur Substitution [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 95-106. |
| [15] | ZHENG Quan, LIU Xuechao, WANG Hao, ZHU Xinfeng, PAN Xiuhong, CHEN Kun, DENG Weijie, TANG Meibo, XU Hao, WU Honghui, JIN Min. Effect of Aluminum Doping on the Crystal Structure and Properties of Indium Selenide Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1528-1535. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS