Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (9): 1525-1533.DOI: 10.16553/j.cnki.issn1000-985x.2025.0028
• Research Articles • Previous Articles Next Articles
LI Jiancheng1(
), ZHONG Zeqi1, WANG Junlei1, LI Zaoyang1(
), WEN Yong2, WANG Lei2, LIU Lijun1(
)
Received:2025-02-18
Online:2025-09-20
Published:2025-09-23
Contact:
LI Zaoyang, LIU Lijun
CLC Number:
LI Jiancheng, ZHONG Zeqi, WANG Junlei, LI Zaoyang, WEN Yong, WANG Lei, LIU Lijun. Control of Oxygen Content During the Growth of Single Crystal Silicon by Czochralski Method[J]. Journal of Synthetic Crystals, 2025, 54(9): 1525-1533.
| Material | Density /(kg⋅m-3) | Heat capacity /(J⋅kg-1⋅K-1) | Thermal conductivity /(W⋅m-1⋅K-1) | Emissivity | Viscosity /(Pa⋅s) | Latent heat /(J⋅kg-1) |
|---|---|---|---|---|---|---|
| Silicon melt | 2 530 | 1 000 | 64 | 0.3 | 8×10-4 | 1 810 000 |
| Argon | — | 520.64 | 0.01+2.5×10-5T | — | 4.95×10-6 | — |
| Silicon crystal | 2 330 | 1 059 | 22 | 0.7 | — | — |
| Quartz | 2 650 | 1 232 | 4 | 0.85 | — | — |
| Graphite | 2 300 | 2 019 | 90 | 0.8 | — | — |
| Steel | 7 900 | 477 | 15 | 0.6 | — | — |
| Carbon felt | 2 101 | -317+4.03T-2.4×10-4T2+5.0×10-7T3 | 0.334-1.83×10-4T+2.15×10-7T2-1.89×10-11T3 | 0.45 | — | — |
| Carbon/Carbon composite materials | 1 450 | 1 800 | 40 | 0.8 | — | — |
Table 1 Physical properties parameters of materials
| Material | Density /(kg⋅m-3) | Heat capacity /(J⋅kg-1⋅K-1) | Thermal conductivity /(W⋅m-1⋅K-1) | Emissivity | Viscosity /(Pa⋅s) | Latent heat /(J⋅kg-1) |
|---|---|---|---|---|---|---|
| Silicon melt | 2 530 | 1 000 | 64 | 0.3 | 8×10-4 | 1 810 000 |
| Argon | — | 520.64 | 0.01+2.5×10-5T | — | 4.95×10-6 | — |
| Silicon crystal | 2 330 | 1 059 | 22 | 0.7 | — | — |
| Quartz | 2 650 | 1 232 | 4 | 0.85 | — | — |
| Graphite | 2 300 | 2 019 | 90 | 0.8 | — | — |
| Steel | 7 900 | 477 | 15 | 0.6 | — | — |
| Carbon felt | 2 101 | -317+4.03T-2.4×10-4T2+5.0×10-7T3 | 0.334-1.83×10-4T+2.15×10-7T2-1.89×10-11T3 | 0.45 | — | — |
| Carbon/Carbon composite materials | 1 450 | 1 800 | 40 | 0.8 | — | — |
| [1] | ANDREANI L C, BOZZOLA A, KOWALCZEWSKI P, et al. Silicon solar cells: toward the efficiency limits[J]. Advances in Physics: X, 2019, 4(1): 1548305. |
| [2] | HOSHIKAWA K, HIRATA H, NAKANISHI H, et al. Control of oxygen concentration in CZ silicon growth[J]. Journal of the Electrochemical Society, 1981, 128(3): C92-C92. |
| [3] | HOSHIKAWA K, HUANG X M. Oxygen transportation during Czochralski silicon crystal growth[J]. Materials Science and Engineering: B, 2000, 72(2/3): 73-79. |
| [4] | YANG D R, LI L B, MA X Y, et al. Oxygen-related centers in multicrystalline silicon[J]. Solar Energy Materials and Solar Cells, 2000, 62(1/2): 37-42. |
| [5] | SAITOH T, WANG X, HASHIGAMI H, et al. Suppression of light degradation of carrier lifetimes in low-resistivity CZ-Si solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 65(1/2/3/4): 277-285. |
| [6] | EL-SHISHTAWY R M, ELSHISHTAWY N. Perovskite solar cells: organic-based molecules for electron and hole transport materials with machine learning insights[J]. Current Opinion in Colloid & Interface Science, 2024, 74: 101848. |
| [7] | LIU X, LIU L J, LI Z Y, et al. Effects of cusp-shaped magnetic field on melt convection and oxygen transport in an industrial CZ-Si crystal growth[J]. Journal of Crystal Growth, 2012, 354(1): 101-108. |
| [8] | HUANG X M, TERASHIMA K, SASAKI H, et al. Oxygen solubilities in Si melt: influence of Sb addition[J]. Japanese Journal of Applied Physics, 1993, 32(9R): 3671. |
| [9] | HIRATA H, HOSHIKAWA K. The dissolution rate of silica in molten silicon[J]. Japanese Journal of Applied Physics, 1980, 19(8): 1573. |
| [10] | TENG Y Y, CHEN J C, LU C W, et al. Numerical simulation of the effect of heater position on the oxygen concentration in the CZ silicon crystal growth process[J]. International Journal of Photoenergy, 2012, 2012(1): 395235. |
| [11] | ZHOU B, CHEN W L, LI Z H, et al. Reduction of oxygen concentration by heater design during Czochralski Si growth[J]. Journal of Crystal Growth, 2018, 483: 164-168. |
| [12] | QI X F, WANG J L, WEN Y, et al. Effect of water-cooled jacket on the oxygen transport during the Czochralski silicon crystal growth process[J]. Journal of Crystal Growth, 2023, 609: 127139. |
| [13] | ZHAO L, LI T, HUANG Z L, et al. Effect of heater structure on oxygen concentration in large diameter n-type Czochralski silicon study using numerical simulation[J]. Applied Thermal Engineering, 2024, 257: 124334. |
| [14] | LIU P D, HU Z C, YANG Y, et al. Reduction of oxygen concentration in 300 mm diameter n-type Czochralski silicon crystal growth using an optimized heating zone with dual side-heaters[J]. CrystEngComm, 2024, 26(29): 3920-3928. |
| [15] | KAKIMOTO K, LIU X, NAKANO S. Analysis of the effect of cusp-shaped magnetic fields on heat, mass, and oxygen transfer using a coupled 2D/3D global model[J]. Crystal Research and Technology, 2022, 57(1): 2100092. |
| [16] | LI J C, LI Z Y, LIU L J, et al. Effects of melt depth on oxygen transport in silicon crystal growth by continuous-feeding Czochralski method[J]. Journal of Crystal Growth, 2023, 610: 127180. |
| [17] | LI J C, WANG J L, LIU L J, et al. A novel approach to reduce the oxygen content in monocrystalline silicon by Czochralski method[J]. Journal of Crystal Growth, 2024, 630: 127608. |
| [18] | ZHAO W H, LI J C, LIU L J. Control of oxygen impurities in a continuous-feeding Czochralski-silicon crystal growth by the double-crucible method[J]. Crystals, 2021, 11(3): 264. |
| [19] | LUKANIN D P, KALAEV V V, MAKAROV Y N, et al. Advances in the simulation of heat transfer and prediction of the melt-crystal interface shape in silicon CZ growth[J]. Journal of Crystal Growth, 2004, 266(1/2/3): 20-27. |
| [20] | TENG R, CHANG Q, LI Y, et al. Numerical analysis of solid-liquid interface shape during large-size single crystalline silicon with Czochralski method[J]. Rare Metals, 2017, 36(4): 289-294. |
| [21] | SMIRNOV A D, KALAEV V V. Development of oxygen transport model in Czochralski growth of silicon crystals[J]. Journal of Crystal Growth, 2008, 310(12): 2970-2976. |
| [22] | QI X F, MA W C, DANG Y F, et al. Optimization of the melt/crystal interface shape and oxygen concentration during the Czochralski silicon crystal growth process using an artificial neural network and a genetic algorithm[J]. Journal of Crystal Growth, 2020, 548: 125828. |
| [23] | LIU X, HARADA H, MIYAMURA Y, et al. Transient global modeling for the pulling process of Czochralski silicon crystal growth. II. Investigation on segregation of oxygen and carbon[J]. Journal of Crystal Growth, 2020, 532: 125404. |
| [24] | ZHANG T, WANG G X, ZHANG H, et al. Turbulent transport of oxygen in the Czochralski growth of large silicon crystals[J]. Journal of Crystal Growth, 1999, 198: 141-146. |
| [25] | OSTROGORSKY A G, MÜLLER G. A model of effective segregation coefficient, accounting for convection in the solute layer at the growth interface[J]. Journal of Crystal Growth, 1992, 121(4): 587-598. |
| [26] | NGUYEN T H T, CHEN J C, CHEN C C. The effects on heat and oxygen transport of different heat shield and sidewall insulation designs during continuous Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2024, 641: 127762. |
| [27] | NGUYEN T H T, CHEN J C, CHEN C C. Effects of different crucible shapes on heat and oxygen transport during continuous Czochralski silicon crystal growth[J]. Journal of Crystal Growth, 2024, 626: 127474. |
| [28] | NGUYEN T H T, CHEN J C, LI C H. Controlling the heat, flow, and oxygen transport by double-partitions during continuous Czochralski (CCz) silicon crystal growth[J]. Materials Science in Semiconductor Processing, 2023, 155: 107235. |
| [1] | LI Xiaochuan, MA Sanbao, ZHOU Fengzi, REN Yongpeng, MA Wuxiang, MEI Haotian. Numerical Simulation for Pipeline Problem of Highly Sb-Doped Czochralski Silicon Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(9): 1534-1546. |
| [2] | LI Shifeng, YANG Jinfeng, HUANG Yunqi, ZHANG Bo, LIU Ziqi, SUN Jun, PAN Shilie. Inclusion Defects in Ca(BO2)2 Crystals Grown by Czochralski Method [J]. Journal of Synthetic Crystals, 2025, 54(9): 1501-1508. |
| [3] | QI Chao, LI Dengnian, LI Zaoyang, YANG Yao, ZHONG Zeqi, LIU Lijun. Power Consumption and Heat Transfer Paths in Czochralski Silicon Crystal Growth under the Influence of Heat Shield [J]. Journal of Synthetic Crystals, 2025, 54(6): 949-959. |
| [4] | YANG Wenwen, LU Wei, XIE Hui, LIU Gang, LYU Xinyu, BAI Yihan, LI Chenhui, PAN Jiaoqing, ZHAO Youwen, SHEN Guiying. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(5): 784-792. |
| [5] | SHAO Meifang, FENG Jinyang, HOU Tianjiang, MA Xiao. Properties of Gadolinium Gallium Garnet Substituded with Different Stoichiometric Ratios of Ca2+/Mg2+/Zr4+ [J]. Journal of Synthetic Crystals, 2025, 54(4): 543-552. |
| [6] | JIANG Bowen, JI Weiguo, ZHANG Lu, FAN Qiming, PAN Mingyan, HUANG Haotian, QI Hongji. Flow Field Symmetry of β-Ga2O3 Crystal Growth by EFG [J]. Journal of Synthetic Crystals, 2025, 54(3): 378-385. |
| [7] | WANG Junlan, LI Zaoyang, YANG Yao, QI Chongchong, LIU Lijun. Evaluation and Control of Crystallization Interface Deformation in the Growth of 6-Inch β-Ga2O3 Crystals by EFG Method [J]. Journal of Synthetic Crystals, 2025, 54(3): 396-406. |
| [8] | YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models [J]. Journal of Synthetic Crystals, 2025, 54(3): 386-395. |
| [9] | YAN Yuchao, WANG Cheng, LU Changcheng, LIU Yingying, XIA Ning, JIN Zhu, ZHANG Hui, YANG Deren. Growth of 2-Inch Fe-Doped β-Ga2O3 Single Crystal with High Resistance and Properties of (010) Substrates [J]. Journal of Synthetic Crystals, 2025, 54(2): 197-201. |
| [10] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
| [11] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
| [12] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
| [13] | YU Hang, ZHAO Qi, QI Xiaofang, MA Wencheng, XU Yongkuan, HU Zhanggui. Effect of Internal Radiation Heat Transfer on the Thermal Stress in Growing Ti∶Sapphire Crystal by Heat Exchanger Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1212-1221. |
| [14] | WANG Hongyan, WANG Shiwu, NIE Yi, ZHANG Xingyu, ZHANG Fang, XU Hui, LI Ruimao, KUANG Yongfei. Growth and Properties of Large Size and High Quality Cr3+∶BeAl2O4 Crystals [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 947-952. |
| [15] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS