人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 898-908.DOI: 10.16553/j.cnki.issn1000-985x.2024.0293
• 研究论文 • 上一篇
于丰1,2,3(), 郑强1,2,3(
), 齐婷玉1,2,3, 张郁柏1,2,3, 马亚丽1,2,3, 贾松岩1,2,3, 李雪1,2,3
收稿日期:
2024-11-22
出版日期:
2025-05-15
发布日期:
2025-05-28
通信作者:
郑强,博士,讲师。E-mail:zhengq_neu@163.com作者简介:
于丰(1999—),男,辽宁省人,硕士研究生。E-mail:1846923590@qq.com
基金资助:
YU Feng1,2,3(), ZHENG Qiang1,2,3(
), QI Tingyu1,2,3, ZHANG Yubai1,2,3, MA Yali1,2,3, JIA Songyan1,2,3, LI Xue1,2,3
Received:
2024-11-22
Online:
2025-05-15
Published:
2025-05-28
摘要: 以高浓度的白云石精制液为原料,采用碳化法制备高长径比文石型碳酸钙晶须。采用XRD、SEM、TEM等对碳酸钙晶须样品进行表征,主要考察碳化温度、搅拌速率、CO2通气速率、陈化时间对碳酸钙分散程度和长径比的影响。研究结果表明,制备碳酸钙晶须的最佳工艺条件为:碳化温度为80 ℃,CO2通气速率为25 mL/min,搅拌速率为200 r/min,陈化时间为1 h。在此条件下,可以得到产率为95%、晶须长径比为30~35、晶须含量为99.7%、白度为99.9%且分布均匀的晶须状碳酸钙。并对碳酸钙生长机理进行了分析,结果表明,碳化过程中Mg2+抑制方解石型碳酸钙生长,促进文石型碳酸钙生长,并沿着(120)晶面方向优先生长。
中图分类号:
于丰, 郑强, 齐婷玉, 张郁柏, 马亚丽, 贾松岩, 李雪. 白云石精制液可控制备高长径比碳酸钙晶须的研究[J]. 人工晶体学报, 2025, 54(5): 898-908.
YU Feng, ZHENG Qiang, QI Tingyu, ZHANG Yubai, MA Yali, JIA Songyan, LI Xue. Controlled Preparation of High Aspect Ratio Calcium Carbonate Whiskers from Dolomite Refined Solution[J]. Journal of Synthetic Crystals, 2025, 54(5): 898-908.
Component | CaO | MgO | SiO2 | SO3 | Fe2O3 | ZnO | MnO | SrO |
---|---|---|---|---|---|---|---|---|
Mass fraction/% | 62.17 | 33.62 | 3.40 | 0.52 | 0.21 | 0.03 | 0.03 | 0.02 |
表1 白云石XRF成分分析
Table 1 XRF composition analysis of dolomite
Component | CaO | MgO | SiO2 | SO3 | Fe2O3 | ZnO | MnO | SrO |
---|---|---|---|---|---|---|---|---|
Mass fraction/% | 62.17 | 33.62 | 3.40 | 0.52 | 0.21 | 0.03 | 0.03 | 0.02 |
Refined solution composition | Ca2+ | Mg2+ | NH4+ | NH3 | NO3- |
---|---|---|---|---|---|
Concentration/(mol·L-1) | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
表2 白云石精制液主要成分
Table 2 Composition of dolomite refined solution
Refined solution composition | Ca2+ | Mg2+ | NH4+ | NH3 | NO3- |
---|---|---|---|---|---|
Concentration/(mol·L-1) | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
Parameter | 0 h | 1 h | 2 h | 3 h |
---|---|---|---|---|
Conversion rate of Ca2+/% | 93.15 | 95.22 | 95.41 | 94.19 |
Whisker length/μm | 10~30 | 25~35 | 20~35 | 20~35 |
Whisker diameter/μm | 1.5~2.5 | 0.5~1.0 | 0.5~1.0 | 0.5~1.0 |
Whisker aspect ratio | 4~12 | 25~35 | 20~35 | 20~35 |
Purity/% | 98.65 | 99.43 | 99.44 | 99.43 |
表3 不同陈化时间下Ca2+的转化率、碳酸钙晶须尺寸及纯度
Table 3 Conversion rate of Ca2+, size and purity of calcium carbonate whiskers for different aging time
Parameter | 0 h | 1 h | 2 h | 3 h |
---|---|---|---|---|
Conversion rate of Ca2+/% | 93.15 | 95.22 | 95.41 | 94.19 |
Whisker length/μm | 10~30 | 25~35 | 20~35 | 20~35 |
Whisker diameter/μm | 1.5~2.5 | 0.5~1.0 | 0.5~1.0 | 0.5~1.0 |
Whisker aspect ratio | 4~12 | 25~35 | 20~35 | 20~35 |
Purity/% | 98.65 | 99.43 | 99.44 | 99.43 |
Group | Ion concentration/(mol·L-1) | ||||
---|---|---|---|---|---|
Ca2+ | Mg2+ | NH4+ | NH3 | NO3- | |
A | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
B | 0.70 | 0 | 1.60 | 1.45 | 3.40 |
表4 精制液的组成
Table 4 Composition of refined solution
Group | Ion concentration/(mol·L-1) | ||||
---|---|---|---|---|---|
Ca2+ | Mg2+ | NH4+ | NH3 | NO3- | |
A | 0.70 | 0.05 | 1.60 | 1.95 | 3.40 |
B | 0.70 | 0 | 1.60 | 1.45 | 3.40 |
图14 以白云石精制液所制备碳酸钙样品的TEM(a)、(b),HRTEM(c)和SAED(d)照片
Fig.14 TEM (a), (b), HRTEM (c)和SAED (d) images of calcium carbonate samples prepared from dolomite refined solution
Crystal plane spacing | d value of measurement/nm | d value of the PDF card/nm |
---|---|---|
(120) | 0.314 | 0.310 |
(121) | 0.275 | 0.273 |
(001) | 0.546 | 0.574 |
( | 0.269 | 0.273 |
Angle of crystal plane | Angle of measurement/(°) | Angle calculated from PDF card/(°) |
(120)/(121) | 28.20 | 28.41 |
(121)/(001) | 61.11 | 61.59 |
(001)/( | 59.14 | 61.59 |
表5 SAED物相匹配计算
Table 5 SAED object matching calculation
Crystal plane spacing | d value of measurement/nm | d value of the PDF card/nm |
---|---|---|
(120) | 0.314 | 0.310 |
(121) | 0.275 | 0.273 |
(001) | 0.546 | 0.574 |
( | 0.269 | 0.273 |
Angle of crystal plane | Angle of measurement/(°) | Angle calculated from PDF card/(°) |
(120)/(121) | 28.20 | 28.41 |
(121)/(001) | 61.11 | 61.59 |
(001)/( | 59.14 | 61.59 |
1 | HUA S Y, ZHENG Q, YU F, et al. Preparation and mechanism of calcium carbonate whiskers from DoLOMITE refined solution[J]. Crystal Research and Technology, 2024, 59(3): 2300305. |
2 | RAMAKRISHNA C, THENEPALLI T, HUH J H, et al. Preparation of needle like aragonite precipitated calcium carbonate (PCC) from dolomite by carbonation method[J]. Journal of the Korean Ceramic Society, 2016, 53(1): 7-12. |
3 | SHEN Y H, XIE A J, CHEN Z X, et al. Controlled synthesis of calcium carbonate nanocrystals with multi-morphologies in different bicontinuous microemulsions[J]. Materials Science and Engineering: A, 2007, 443(1/2): 95-100. |
4 | SAULAT H, CAO M L, KHAN M M, et al. Preparation and applications of calcium carbonate whisker with a special focus on construction materials[J]. Construction and Building Materials, 2020, 236: 117613. |
5 | LIENDO F, ARDUINO M, DEORSOLA F A, et al. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: a review[J]. Powder Technology, 2022, 398: 117050. |
6 | LI Q L, DAI Z G, SHANG D K, et al. Ultrahigh purity CaCO3 whiskers derived from the enhanced diffusion of carbonate ions from a larger liquid-gas interface through porous quartz stones[J]. CrystEngComm, 2020, 22(38): 6407-6414. |
7 | CHEN Q J, DING W J, PENG T J, et al. Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag[J]. Open Chemistry, 18(1): 347-356. |
8 | SUN Y B, SHEN Y Y, WANG Y L, et al. Converting sintering red mud to valuable calcium carbonate whiskers via an innovative magnesium-modified wet carbonation[J]. Ceramics International, 2024, 50(12): 21808-21820. |
9 | LEE S W, KIM Y I, AHN J W. The use of iminodiacetic acid for low-temperature synthesis of aragonite crystal microrods: correlation between aragonite crystal microrods and stereochemical effects[J]. International Journal of Mineral Processing, 2009, 92(3/4): 190-195. |
10 | WANG M, ZOU H K, SHAO L, et al. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment[J]. Powder Technology, 2004, 142(2/3): 166-174. |
11 | SULISTIYONO E, FIRDIYONO F, NATASHA N C, et al. Comparison of dolomite crystal structure, calcinations dolomite and magnesium hydroxide in partial calcinations and slaking process[J]. IOP Conference Series: Materials Science and Engineering, 2017, 176: 012041. |
12 | HOULLEBERGHS M, BREYNAERT E, ASSELMAN K, et al. Evolution of the crystal growth mechanism of zeolite W (MER) with temperature[J]. Microporous and Mesoporous Materials, 2019, 274: 379-384. |
13 | 马 俊, 刘华彦, 梁 锦, 等. 两种重要形貌的碳酸钙的可控合成及生长机理探讨[J]. 材料科学与工程学报, 2011, 29(2): 227-232. |
MA J, LIU H Y, LIANG J, et al. Controllable synthesis of calcium carbonate with needle-like and cubic morphologies and the crystal growth mechanisms[J]. Journal of Materials Science and Engineering, 2011, 29(2): 227-232 (in Chinese). | |
14 | DU L, WANG Y J, WANG K, et al. Growth of aragonite CaCO3 whiskers in a microreactor with calcium dodecyl benzenesulfonate as a control agent[J]. Industrial & Engineering Chemistry Research, 2015, 54(28): 7131-7140. |
15 | 胡克伟. 文石型碳酸钙晶须制备工艺及其形成机理研究[D]. 成都: 成都理工大学, 2006. |
HU K W. Study on preparation technology and formation mechanism of aragonite calcium carbonate whisker[D]. Chengdu: Chengdu University of Technology, 2006 (in Chinese). | |
16 | CHEN J X, ZHANG X C, GE Y Y, et al. The precipitation mechanism of calcium carbonate in the gas-liquid-solid three phase at alkalescency condition[J]. Crystal Research and Technology, 2017, 52(2): 1600229. |
17 | SINGH M R, RAMKRISHNA D. Dispersions in crystal nucleation and growth rates: implications of fluctuation in supersaturation[J]. Chemical Engineering Science, 2014, 107: 102-113. |
18 | 李会杰, 黄娜娜, 仇 龙, 等. 白云石制备碳酸钙晶须及其机理的研究[J]. 人工晶体学报, 2020, 49(1): 119-124+137. |
LI H J, HUANG N N, QIU L, et al. Preparation of calcium carbonate whiskers from dolomite and its mechanism[J]. Journal of Synthetic Crystals, 2020, 49(1): 119-124+137 (in Chinese). | |
19 | MATSUMOTO M, FUKUNAGA T, ONOE K. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique[J]. Chemical Engineering Research and Design, 2010, 88(12): 1624-1630. |
20 | ZENG Y P, CAO J W, WANG Z, et al. Insights into the confined crystallization in microfluidics of amorphous calcium carbonate[J]. Crystal Growth & Design, 2018, 18(11): 6538-6546. |
21 | MACHADO N T, SANTOS S F, FRANCESCHI E, et al. Crystallization of calcium carbonate: modeling thermodynamic equilibrium, pathway, nucleation, growth, agglomeration, and dissolution kinetics with the presence of Mg2+, Ba2+, and Sr2+ [J]. Industrial & Engineering Chemistry Research, 2022, 61(37): 13944-13961. |
22 | BERNER R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water[J]. Geochimica et Cosmochimica Acta, 1975, 39(4): 489-504. |
23 | 王世燕, 袁顺东, 卢贵武. Mg2+影响方解石晶体生长机制的分子动力学研究[J]. 青岛大学学报(自然科学版), 2012, 25(3): 41-45. |
WANG S Y, YUAN S D, LU G W. Molecular dynamics study of influence of Mg2+ on calcite crystal growth[J]. Journal of Qingdao University (Natural Science Edition), 2012, 25(3): 41-45 (in Chinese). |
[1] | 蒋先龙, 郑玮涛, 朱允中. 原位诊断铌酸锂晶体生长界面的翻转现象[J]. 人工晶体学报, 2025, 54(4): 533-542. |
[2] | 齐占国, 王守志, 李秋波, 王忠新, 邵慧慧, 刘磊, 王国栋, 孙德福, 于汇东, 蒋铠泽, 张爽, 陈秀芳, 徐现刚, 张雷. 4英寸高质量GaN单晶衬底制备[J]. 人工晶体学报, 2025, 54(4): 717-720. |
[3] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
[4] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
[5] | 杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波. 光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究[J]. 人工晶体学报, 2025, 54(2): 202-211. |
[6] | 黄东阳, 黄浩天, 潘明艳, 徐子骞, 贾宁, 齐红基. 垂直布里奇曼法生长氧化镓单晶及其性能表征[J]. 人工晶体学报, 2025, 54(2): 190-196. |
[7] | 许万里, 甘云海, 李悦文, 李彬, 郑有炓, 张荣, 修向前. 高均匀性6英寸GaN厚膜的高速率HVPE生长研究[J]. 人工晶体学报, 2025, 54(1): 11-16. |
[8] | 孙元龙, 胡子钰, 郑国宗. 大尺寸CH3NH3PbBr3晶体生长和光电性能表征[J]. 人工晶体学报, 2024, 53(8): 1313-1318. |
[9] | 马启司, 刘江高, 折伟林, 曹聪, 张立超, 赵超, 范叶霞, 周振奇. 基于CGSim模拟的炉膛空气对流对碲锌镉晶体生长温场影响研究[J]. 人工晶体学报, 2024, 53(8): 1344-1351. |
[10] | 凌昊, 徐乐, 陈思贤, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. 溶液法生长大尺寸CsCu2I3钙钛矿单晶及其光学性能研究[J]. 人工晶体学报, 2024, 53(7): 1121-1126. |
[11] | 艾家辛, 万洪平, 钱俊兵, 韦华. VGF法磷化铟单晶炉加热器对炉内热场分布影响的研究[J]. 人工晶体学报, 2024, 53(5): 781-791. |
[12] | 邢佳斌, 李威, 贾松岩, 马亚丽, 李雪, 郑强. 低温碳化法制备高分散性纳米碳酸钙的研究[J]. 人工晶体学报, 2024, 53(5): 864-872. |
[13] | 黄昌保, 胡倩倩, 朱志成, 李亚, 毛长宇, 徐俊杰, 吴海信, 倪友保. 中长波Cr2+/Fe2+∶CdSe激光晶体生长及元件制备[J]. 人工晶体学报, 2024, 53(4): 551-553. |
[14] | 秦峰, 吴金杰, 邓宁勤, 焦志伟, 朱伟峰, 汤显强, 赵瑞. 基于溶液法制备卤化铅钙钛矿的直接型辐射探测器研究进展[J]. 人工晶体学报, 2024, 53(4): 554-571. |
[15] | 曹聪, 刘江高, 范叶霞, 李振兴, 周振奇, 马启司, 牛佳佳. 碲锌镉晶体生长温度梯度与界面形状稳定性关系的研究[J]. 人工晶体学报, 2024, 53(4): 641-648. |
阅读次数 | ||||||
全文 14
|
|
|||||
摘要 |
|
|||||