[1] 孙 军, 郝永鑫, 张 玲, 等. 铌酸锂晶体及其应用概述[J]. 人工晶体学报, 2020, 49(6): 947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964 (in Chinese). [2] MILLER D C, VALENTINO A J, SHICK L K. The effect of melt flow phenomena on the perfection of Czochralski grown gadolinium gallium garnet[J]. Journal of Crystal Growth, 1978, 44(2): 121-134. [3] SCHWABE D, SUMATHI R R, WILKE H. The interface inversion process during the Czochralski growth of high melting point oxides[J]. Journal of Crystal Growth, 2004, 265(3/4): 494-504. [4] TAKAGI K, FUKAZAWA T, ISHII M. Inversion of the direction of the solid-liquid interface on the Czochralski growth of GGG crystals[J]. Journal of Crystal Growth, 1976, 32(1): 89-94. [5] HIRATA A, TACHIBANA M, SUGIMOTO T, et al. Control of crystal-melt interface shape during growth of lithium niobate single crystal[J]. Journal of Crystal Growth, 1993, 131(1/2): 145-152. [6] ZHU Y Z, DING J L, WANG W J, et al. Interface diagnostics: in situ determination of crystal-melt interface shape evolutions via probing growth interface electromotive force[J]. Acta Materialia, 2022, 238: 118242. [7] ZHU Y Z, LIN S P, LIU Z H, et al. In situ visualization of the quasi-periodic crystal growth interface fluctuation by growth interface electromotive force spectrum in a Czochralski system[J]. CrystEngComm, 2019, 21(7): 1107-1113. [8] WANG X L, ALMER J, LIU C T, et al. In situ synchrotron study of phase transformation behaviors in bulk metallic glass by simultaneous diffraction and small angle scattering[J]. Physical Review Letters, 2003, 91(26): 265501. [9] NGUYEN T C, RUKSAKULPIWAT C, RUGMAI S, et al. Crystallization behavior studied by synchrotron small-angle X-ray scattering of poly (lactic acid)/cellulose nanofibers composites[J]. Composites Science and Technology, 2017, 143: 106-115. [10] BECKER M, REGULA G, REINHART G, et al. Simultaneous X-ray radiography and diffraction topography imaging applied to silicon for defect analysis during melting and crystallization[J]. Journal of Applied Crystallography, 2019, 52(6): 1312-1320. [11] TREMSIN A S, PERRODIN D, LOSKO A S, et al. In-situ observation of phase separation during growth of Cs2LiLaBr6:Ce crystals using energy-resolved neutron imaging[J]. Crystal Growth & Design, 2017, 17(12): 6372-6381. [12] ITON L E, TROUW F, BRUN T O, et al. Small-angle neutron-scattering studies of the template-mediated crystallization of ZSM-5-type zeolite[J]. Langmuir, 1992, 8(4): 1045-1048. [13] DREVERMANN A, STURZ L, WARNKEN N, et al. Investigation of the initial transient in directional solidification of binary AlCu alloys[J]. Materials Science and Engineering: A, 2005, 413: 259-262. [14] DING J L, LIU L J. Real-time prediction of crystal/melt interface shape during Czochralski crystal growth[J]. CrystEngComm, 2018, 20(43): 6925-6931. [15] QI X F, MA W C, DANG Y F, et al. Optimization of the melt/crystal interface shape and oxygen concentration during the Czochralski silicon crystal growth process using an artificial neural network and a genetic algorithm[J]. Journal of Crystal Growth, 2020, 548: 125828. [16] MIYAZAWA H, LIU L J, KAKIMOTO K. Numerical analysis of influence of crucible shape on interface shape in a unidirectional solidification process[J]. Journal of Crystal Growth, 2008, 310(6): 1142-1147. [17] WANG W J, ZHU Y Z, WANG B. Interface diagnostics: in situ prediction of constitutional supercooling and backmelting by growth interface electromotive force[J]. Materials & Design, 2023, 232: 112070. [18] ZHU Y Z, MA D C, LONG S W, et al. In-situ detection of growth striations by crystallization electromotive force measurement during Czochralski crystal growth[J]. Journal of Crystal Growth, 2017, 475: 70-76. [19] ZHU Y Z, TANG F, YANG X, et al. In-situ detection of convection and rotation striations by growth interface electromotive force spectrum[J]. Journal of Crystal Growth, 2018, 487: 120-125. [20] UDA S, KOYAMA C. The population and activity of oxygen in the diffusion boundary layer within a congruent LiNbO3 melt[J]. Journal of Crystal Growth, 2020, 548: 125837. [21] SHI Q L, NOZAWA J, UDA S. Effect of interface electric field on partitioning during the growth of conventional and true congruent-melting LiNbO3 crystals[J]. Journal of Crystal Growth, 2020, 549: 125864. [22] 刘宏德, 王维维, 张中正, 等. 铌酸锂晶体的缺陷结构[J]. 人工晶体学报, 2024, 53(3): 355-371. LIU H D, WANG W W, ZHANG Z Z, et al. Defect structure of lithium niobate crystals[J]. Journal of Synthetic Crystals, 2024, 53(3): 355-371 (in Chinese). [23] LI S S, ZHOU C H, XU C. Evolution features and optimization of interface shape during CdZnTe crystal growth using vertical gradient freeze (VGF) technique[J]. Journal of Crystal Growth, 2024, 627: 127536. [24] CARRUTHERS J R. Flow transitions and interface shapes in the Czochralski growth of oxide crystals[J]. Journal of Crystal Growth, 1976, 36(2): 212-214. [25] OZOE H, TOH K, INOUE T. Transition mechanism of flow modes in Czochralski convection[J]. Journal of Crystal Growth, 1991, 110(3): 472-480. [26] TEITEL M, SCHWABE D, GELFGAT A Y. Experimental and computational study of flow instabilities in a model of Czochralski growth[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1343-1348. [27] BERDNIKOV V S, PROSTOMOLOTOV A I, VEREZUB N A. The phenomenon of “cold plume” instability in Czochralski hydrodynamic model: physical and numerical simulation[J]. Journal of Crystal Growth, 2014, 401: 106-110. [28] KOBAYASHI N. Hydrodynamics in Czochralski growth-computer analysis and experiments[J]. Journal of Crystal Growth, 1981, 52: 425-434. [29] 闵乃本. 晶体生长的物理基础[M]. 南京: 南京大学出版社, 2019. MIN N B. Physical basis of crystal growth[M]. Nanjing: Nanjing University Press, 2019 (in Chinese). [30] BURTON J A, PRIM R C, SLICHTER W P. The distribution of solute in crystals grown from the melt. part I. theoretical[J]. The Journal of Chemical Physics, 1953, 21(11): 1987-1991. [31] DUFFAR T. Capillarity and shape stability in crystal growth from the melt[M]//Handbook of Crystal Growth. Amsterdam: Elsevier, 2015: 757-791. [32] RUDOLPH P, WANG W, TSUKAMOTO K, et al. Transport phenomena of crystal growth—heat and mass transfer[C]//AIP Conference Proceedings. Dalian (China). AIP, 2010: 107-132. [33] JING C J, IMAISHI N, YASUHIRO S, et al. Three-dimensional numerical simulation of spoke pattern in oxide melt[J]. Journal of Crystal Growth, 1999, 200(1/2): 204-212. [34] JENSEN M N, HELLESØ O G. Measuring the end-face of silicon boules using mid-infrared laser scanning[J]. CrystEngComm, 2021, 23(26): 4648-4657. |