人工晶体学报 ›› 2025, Vol. 54 ›› Issue (5): 737-756.DOI: 10.16553/j.cnki.issn1000-985x.2024.0309
杜青波(), 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强(
)
收稿日期:
2024-12-09
出版日期:
2025-05-15
发布日期:
2025-05-28
通信作者:
李国强,博士,研究员。E-mail:liguoqiang@crip.org.cn作者简介:
杜青波(1999—),男,江西省人,硕士研究生。E-mail:2247807057@qq.com
基金资助:
DU Qingbo(), YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang(
)
Received:
2024-12-09
Online:
2025-05-15
Published:
2025-05-28
摘要: 碳化硅(SiC)半导体材料具有宽禁带、大晶体原子离位阈能及高电子空穴迁移速率等众多突出优势,基于其研制的SiC核辐射探测器具有耐高温、抗辐照、体积小、响应快等优点。高质量、大尺寸SiC晶体材料与外延生长技术及器件制备工艺的不断提升,极大地促进了SiC基核辐射探测器的发展。本文从SiC核辐射探测器的原理及性能评价指标入手,分析了辐射探测时SiC材料与各种辐射粒子相互作用的方式、主要性能指标,以及主要性能指标与SiC晶体缺陷等的关系,并基于SiC晶体的物理性质,总结对比了探测器级SiC晶体衬底制备和外延生长的方法,重点介绍了SiC带电粒子探测器、中子探测器、X/γ探测器的最新研究进展,分析了SiC基核辐射探测器发展面临的挑战,为提高SiC基核辐射探测器的性能提供了参考。
中图分类号:
杜青波, 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强. 宽禁带半导体碳化硅基核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(5): 737-756.
DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector[J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756.
图1 SiC探测器原理图和三种效应竞争关系图。(a)SiC探测器原理示意图[14];(b)三种主要效应优势区分布图[16]
Fig.1 SiC detector schematic diagram and three effects competition diagram. (a) Schematic diagram of SiC detector principle[14]; (b) schematic diagram of three main effect advantages[16]
缺陷类型 | 影响 |
---|---|
基面位错 | 导致载流子寿命局部降低,增加探测器漏电流 |
螺型位错与微管 | 导致雪崩前反向偏置点提前失效,降低击穿电压 |
表面宏观缺陷 | 增大漏电流,明显降低击穿电压 |
堆垛层错 | 导致电荷积累,产生静电势,增加正向电压降 |
表1 不同缺陷对碳化硅探测器性能的影响
Table 1 Influences of different defects on the performance of silicon carbide detector
缺陷类型 | 影响 |
---|---|
基面位错 | 导致载流子寿命局部降低,增加探测器漏电流 |
螺型位错与微管 | 导致雪崩前反向偏置点提前失效,降低击穿电压 |
表面宏观缺陷 | 增大漏电流,明显降低击穿电压 |
堆垛层错 | 导致电荷积累,产生静电势,增加正向电压降 |
性能 | Si | Ge | 6H-SiC | GaAs | GaN | 4H-SiC | 金刚石 |
---|---|---|---|---|---|---|---|
禁带宽度/eV | 1.12 | 0.66 | 3.0 | 1.43 | 3.4 | 3.26 | 5.5 |
击穿电场强度/(MV·cm-1) | 0.5 | 0.1 | 2.4 | 0.6 | 0.41 | 3 | 10 |
介电常数 | 11.8 | 16.2 | 10 | 12.9 | 9.6 | 9.66 | 5.5 |
电子迁移率/(cm2·V-1·s-1) | 1 450 | 3 900 | 370 | ≤8 500 | 1 000 | 1 020 | 2 200 |
空穴迁移率/(cm2·V-1·s-1) | 450 | 1 900 | 50 | ≤400 | 30 | 115 | 1 600 |
密度/(g·cm-3) | 2.33 | 5.3 | 3.2 | 5.37 | 6.2 | 3.22 | 3.51 |
热导率/(W·cm-1·K-1) | 1.48 | 0.6 | 3.6 | 0.54 | 1.5 | 5 | 20 |
表2 4H-SiC与其他半导体材料的特性
Table 2 Properties of 4H-SiC and other semiconductor materials
性能 | Si | Ge | 6H-SiC | GaAs | GaN | 4H-SiC | 金刚石 |
---|---|---|---|---|---|---|---|
禁带宽度/eV | 1.12 | 0.66 | 3.0 | 1.43 | 3.4 | 3.26 | 5.5 |
击穿电场强度/(MV·cm-1) | 0.5 | 0.1 | 2.4 | 0.6 | 0.41 | 3 | 10 |
介电常数 | 11.8 | 16.2 | 10 | 12.9 | 9.6 | 9.66 | 5.5 |
电子迁移率/(cm2·V-1·s-1) | 1 450 | 3 900 | 370 | ≤8 500 | 1 000 | 1 020 | 2 200 |
空穴迁移率/(cm2·V-1·s-1) | 450 | 1 900 | 50 | ≤400 | 30 | 115 | 1 600 |
密度/(g·cm-3) | 2.33 | 5.3 | 3.2 | 5.37 | 6.2 | 3.22 | 3.51 |
热导率/(W·cm-1·K-1) | 1.48 | 0.6 | 3.6 | 0.54 | 1.5 | 5 | 20 |
探测器类型 | 工作温度 | 辐照损伤特性 | 能量分辨率 | 制作工艺 |
---|---|---|---|---|
SiC基 | 室温可使用,能在反应堆级别温度下使用,理论极限工作高温可达1 240 ℃ | 在大剂量α/β/γ射线、等效1 MeV中子注量低于5×1013 cm-2或8 MeV质子注量低于3×1014 cm-2辐照条件下探测器几乎都无辐照损伤 | 平均电离能7.78 eV,探测α粒子最优为0.25%,优于气体探测器和闪烁体探测器 | 能生产出高质量、大尺寸(6英寸和8英寸)的晶体,器件制作工艺在宽禁带半导体中较为成熟 |
Si基 | 需要使用液氮冷却或电制冷在-20 ℃低温下才能稳定工作 | 原子离位阈能13~20 eV,性能随辐照强度增加急剧下降,中子注量达1013 cm-2量级严重退化[ | 平均电离能3.6 eV,在沉积相同能下,能量分辨率优于SiC基 | 晶体生长与器件制作工艺成熟 |
Ge基 | 室温不能使用,需要在低温下才能稳定工作 | 原子离位阈能16~20 eV,耐辐照能力与Si基相似,强辐照场下性能急剧下降 | 平均电离能2.95 eV,能量分辨率最高,优于Si基 | 具有成熟的晶体生长与器件制作工艺 |
GaAs基 | 室温下能使用,可在高温达120 ℃下工作 | 20 MeV电子剂量低于0.5MGy或1MeV中子注量低于1.3×1014 cm-2辐照后可使用[ | 平均电离能4.8 eV,能量分辨率优于SiC基 | 晶体质量优异且技术成熟,相对第三代半导体成本低 |
金刚石 | 室温可工作,工作高温可达650 ℃以上[ | 在1015 质子/cm2、250 Mrad光子或3×1015 中子/cm2辐照条件下几乎都无辐照损伤[ | 平均电离能13.6 eV,能量分辨率比SiC基差 | 难以生长出高质量、大尺寸金刚石晶体,器件制作难 |
表3 不同类型核辐射探测器特性对比
Table 3 Comparison of characteristics of different types of nuclear radiation detectors
探测器类型 | 工作温度 | 辐照损伤特性 | 能量分辨率 | 制作工艺 |
---|---|---|---|---|
SiC基 | 室温可使用,能在反应堆级别温度下使用,理论极限工作高温可达1 240 ℃ | 在大剂量α/β/γ射线、等效1 MeV中子注量低于5×1013 cm-2或8 MeV质子注量低于3×1014 cm-2辐照条件下探测器几乎都无辐照损伤 | 平均电离能7.78 eV,探测α粒子最优为0.25%,优于气体探测器和闪烁体探测器 | 能生产出高质量、大尺寸(6英寸和8英寸)的晶体,器件制作工艺在宽禁带半导体中较为成熟 |
Si基 | 需要使用液氮冷却或电制冷在-20 ℃低温下才能稳定工作 | 原子离位阈能13~20 eV,性能随辐照强度增加急剧下降,中子注量达1013 cm-2量级严重退化[ | 平均电离能3.6 eV,在沉积相同能下,能量分辨率优于SiC基 | 晶体生长与器件制作工艺成熟 |
Ge基 | 室温不能使用,需要在低温下才能稳定工作 | 原子离位阈能16~20 eV,耐辐照能力与Si基相似,强辐照场下性能急剧下降 | 平均电离能2.95 eV,能量分辨率最高,优于Si基 | 具有成熟的晶体生长与器件制作工艺 |
GaAs基 | 室温下能使用,可在高温达120 ℃下工作 | 20 MeV电子剂量低于0.5MGy或1MeV中子注量低于1.3×1014 cm-2辐照后可使用[ | 平均电离能4.8 eV,能量分辨率优于SiC基 | 晶体质量优异且技术成熟,相对第三代半导体成本低 |
金刚石 | 室温可工作,工作高温可达650 ℃以上[ | 在1015 质子/cm2、250 Mrad光子或3×1015 中子/cm2辐照条件下几乎都无辐照损伤[ | 平均电离能13.6 eV,能量分辨率比SiC基差 | 难以生长出高质量、大尺寸金刚石晶体,器件制作难 |
图5 SiC单晶衬底主要制备方法。(a)顶部籽晶溶液生长法[39];(b)高温化学气相沉积法[41];(c)物理气相传输法[45]
Fig.5 Main preparation method of SiC single crystal substrate. (a)Top seed solution growth method[39]; (b)high temperature chemical vapor deposition[41]; (c)physical vapor transfer method[45]
图6 溶液法生长的SiC单晶衬底实物图。(a)日本住友3英寸4H-SiC[47];(b)日本住友3.75英寸4H-SiC[48];(c)日本丰田2英寸4H-SiC[49];(d)日本丰田4英寸4H-SiC[50];(e)中国科学院物理研究所4英寸4H-SiC[54]
Fig.6 Real picture of SiC single crystal substrate grown by solution method. (a) 3 inch 4H-SiC by Sumitomo[47]; (b) 3.75 inch 4H-SiC by Sumitomo[48]; (c) 2 inch 4H-SiC by Toyota[49]; (d) 4 inch 4H-SiC by Toyota[50]; (e) 4 inch 4H-SiC grown at Institute of Physics CAS[54]
外延生长方法 | 优点 | 缺点 |
---|---|---|
CVD | 能精确控制外延厚度和掺杂浓度,生长速率合适,表面形貌好 | 需要高纯的生长源,难以控制外延层中的缺陷密度 |
MBE | 生长温度低,高精度厚度,能生长不同SiC晶型,利于超精细结构生长 | 成本高,生长速率低,不适于功率器件外延的制备 |
LPE | 成本低,高生长速率,低缺陷密度,高缺陷闭合效率 | 难控制掺杂浓度,表面形貌粗糙,要准确控制热平衡条件 |
表4 几种常见SiC外延生长方法的优缺点
Table 4 Advantages and disadvantages of several common SiC epitaxial growth methods
外延生长方法 | 优点 | 缺点 |
---|---|---|
CVD | 能精确控制外延厚度和掺杂浓度,生长速率合适,表面形貌好 | 需要高纯的生长源,难以控制外延层中的缺陷密度 |
MBE | 生长温度低,高精度厚度,能生长不同SiC晶型,利于超精细结构生长 | 成本高,生长速率低,不适于功率器件外延的制备 |
LPE | 成本低,高生长速率,低缺陷密度,高缺陷闭合效率 | 难控制掺杂浓度,表面形貌粗糙,要准确控制热平衡条件 |
图9 SiC探测器对重离子探测的研究[75]。(a)4H-SiC肖特基探测器截面图;(b)所制备的肖特基4H-SiC探测器电流-电压特性图;(c)外延层厚25 μm的4H-SiC探测器对不同能量132Xe23+的探测光谱;(d)外延层厚50 μm的4H-SiC探测器对不同能量132Xe23+的探测光谱;(e)探测器的PHD与Xe离子能量依赖关系图;(f)Xe离子峰位与能量依赖关系图
Fig.9 Study on heavy ion detection by SiC detector[75]. (a) Section of 4H-SiC Schottky detector; (b) current-voltage characteristic diagram of Schottky 4H-SiC detector prepared; (c) detection spectra of 132Xe23+ with different energies by 4H-SiC detector with epitaxial layer thickness of 25 μm; (d) detection spectra of 132Xe23+ with different energies by a 4H-SiC detector with epitaxial layer thickness of 50 μm; (e) energy dependence diagram of detector PHD and Xe ion; (f) Xe ion peak and energy dependence diagram
图10 50 μm外延层SiC探测器α粒子探测研究[76]。(a)探测器结构图;(b)SiC探测器探测α粒子谱的装置示意图;(c)实际实验装置图;(d)4H-SiC探测器在高达500 ℃的不同温度下反向电流-电压特性图
Fig.10 Study on α particle detection by 50 μm epitaxial layer SiC detector[76]. (a) Detector structure diagram; (b) schematic diagram of the device for detecting α particle spectrum by SiC detector; (c) drawings of actual experimental installations; (d) reverse current-voltage characteristics of 4H-SiC detector at different temperatures up to 500 ℃
图11 SiC探测器对快中子探测的研究。(a)自偏压SiC基中子探测器结构图[81];(b)仿真结果与实测结果在某些特征峰处的对比图[84]
Fig.11 Research on fast neutron detection by SiC detector. (a) Structure diagram of self-biased SiC based neutron detector[81]; (b) comparison between simulation results and measured results at some characteristic peaks[84]
图12 各种类型SiC中子探测器的研究。(a)LiF型碳化硅探测器热中子注量PHD图[87];(b)空气型碳化硅探测器热中子注量PHD图[87];(c)PIN型SiC探测器实物图[89];(d)探测器的时间响应测试结果图[89]
Fig.12 Research on various types of SiC neutron detectors. (a) PHD diagram of thermal neutron fluence of LiF type silicon carbide detector[87]; (b) PHD diagram of thermal neutron fluence of air-type silicon carbide detector[87]; (c) physical picture of PIN-type SiC detector[89]; (d) diagram of the detector's time response test results[89]
Detector | TNR | L-shift | ΔR |
---|---|---|---|
Si-LiF | 3×10-2 | Yes | -5%×1012 cm2 |
SiC-LiF | 3×10-2 | Yes | No |
SiC-air | 3.5×10-8 | Very little | No |
表5 几种不同探测器的热中子响应和损伤特性总结[88]
Table 5 Summary of thermal neutron response and damage characteristics of several different detectors[88]
Detector | TNR | L-shift | ΔR |
---|---|---|---|
Si-LiF | 3×10-2 | Yes | -5%×1012 cm2 |
SiC-LiF | 3×10-2 | Yes | No |
SiC-air | 3.5×10-8 | Very little | No |
图13 SiC核辐射探测器对热中子与快中子的探测研究[91]。(a)覆盖LiF的探测器对热中子的响应图;(b)LiF涂层探测器的计数率随束流的变化图;(c)快中子探测的实验装置图;(d)不带转换层SiC探测器中子探测结果图
Fig.13 Detection of thermal neutrons and fast neutrons by SiC nuclear radiation detector[91]. (a) Response diagram of the detector covered with LiF to thermal neutrons; (b) change of counting rate of LiF coated detector with beam current; (c) diagram of experimental apparatus for fast neutron detection; (d) neutron detection results of SiC detector without transition layer
图14 X射线SiC核辐射探测器。(a)肖特基SiC探测器结构图[93];(b)SiC阵列探测器图[93];(c)SiC阵列探测器探测到的241Am源X射线能谱图[93];(d)高分辨率X射线SiC探测器在27和100 ℃下探测到的241Am的X射线谱[31]
Fig.14 X-ray SiC nuclear radiation detector. (a) Schottky SiC detector structure diagram[93]; (b) SiC array detector diagram[93]; (c) X-ray spectra of 241Am source detected by SiC array detector[93]; (d) 241Am X-ray spectra detected by high-resolution X-ray SiC detector at 27 and 100 °C[31]
图15 商用功率SiC肖特基二极管作为碳化硅γ核辐射探测器可行性研究[97]。(a)SiC肖特基二极管结构图;(b)两种不同功率肖特基SiC二极管的漏电流与反向偏压关系图;(c)反向偏压10 V时不同γ剂量率下二极管1的辐射感应电流响应波形图;(d)反向偏压200 V时不同γ剂量率下二极管1的辐射感应电流响应波形图;(e)反向偏压10 V时不同γ剂量率下二极管2的辐射感应电流响应波形图;(f)反向偏压200 V时不同γ剂量率下二极管2的辐射感应电流响应波形图;(g)两种肖特基SiC二极管在各反向偏压下辐射感应电流随剂量率变化曲线图;(h)剂量率为0.258 Gy/h时二极管1从漏电流到辐射感应电流的转变图;(i)剂量率为26.312 Gy/h时二极管1从漏电流到辐射感应电流的转变图
Fig.15 Feasibility study of commercial power SiC Schottky diode as silicon carbide γ-radiation detector[97]. (a) Structure diagram of SiC Schottky diode; (b) relationship between leakage current and reverse bias of two different power Schottky SiC diodes; (c) waveform diagram of the radiation-induced current response of diode 1 at different gamma dose rates at a reverse bias voltage of 10 V; (d) waveform diagram of the radiation-induced current response waveform of diode 1 at different gamma dose rates at a reverse bias of 200 V; (e) waveform diagram of the radiation-induced current response of diode 2 at different gamma dose rates at a reverse bias of 10 V; (f) waveform diagram of the radiation-induced current response of diode 2 at different gamma dose rates at a reverse bias of 200 V; (g) curve of radiation induced current with dose rate of two Schottky SiC diodes at each reverse bias voltage; (h) transition diagram of diode 1 from leakage current to radiation induced current when the dose rate is 0.258 Gy/h; (i) transition diagram of diode 1 from leakage current to radiation induced current when the dose rate of 26.312 Gy/h
图16 探测强辐射场γ剂量率的SiC核辐射探测系统[98]。(a)未封装的SiC基γ射线探测器;(b)封装好并焊接SMA连接器的探测器图;(c)碳化硅核辐射探测系统结构图;(d)碳化硅γ探测器对137Cs探测时前置放大器输出信号图;(e)碳化硅γ探测器测试实验布局图;(f)探测器计数率和γ射线剂量率转换曲线图;(g)碳化硅γ探测器在n/γ混合辐射场中辐照实验布局图;(h)碳化硅γ探测器辐照前、后总计数与加速器脉冲频率关系拟合曲线图
Fig.16 SiC nuclear radiation detection system for detecting gamma dose rate of strong radiation field[98]. (a) Unpackaged SiC-based gamma-ray detector; (b) detector drawings for packaged and welded SMA connectors; (c) structure diagram of silicon carbide nuclear radiation detection system; (d) output signal diagram of preamplifier when silicon carbide γ detector detects 137Cs; (e) silicon carbide gamma detector test layout diagram; (f) conversion curves of detector count rate and gamma dose rate; (g) irradiation experiment layout diagram of silicon carbide γ detector in n/γ mixed radiation field; (h) fitting curve of the relationship between the total number of silicon carbide γ detector before and after irradiation and the accelerator pulse frequency
1 | HAINO S. Performance of the AMS-02 silicon tracker in the ISS mission[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 699: 221-224. |
2 | TURALA M. Silicon tracking detectors: historical overview[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 541(1/2): 1-14. |
3 | BRUZZI M. Radiation damage in silicon detectors for high-energy physics experiments[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 960-971. |
4 | KOUZES R T, LINTEREUR A T, SICILIANO E R. Progress in alternative neutron detection to address the helium-3 shortage[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784: 172-175. |
5 | GEBAUER B. Towards detectors for next generation spallation neutron sources[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 535(1/2): 65-78. |
6 | 黄海栗. SiC粒子辐照探测器性能及其性能退化的研究[D]. 西安: 西安电子科技大学, 2019. |
HUANG H L. Study on performance and performance degradation of SiC particle irradiation detector[D]. Xi’an: Xidian University, 2019 (in Chinese). | |
7 | XU M, GIRISH Y R, RAKESH K P, et al. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications[J]. Materials Today Communications, 2021, 28: 102533. |
8 | MORKOC H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. |
9 | CAPAN I. Wide-bandgap semiconductors for radiation detection: a review[J]. Materials, 2024, 17(5): 1147. |
10 | WANG L, JARRELL J, XUE S, et al. Fast neutron detection at near-core location of a research reactor with a SiC detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888: 126-131. |
11 | RUDDY F H, OTTAVIANI L, LYOUSSI A, et al. Silicon carbide neutron detectors for harsh nuclear environments: a review of the state of the art[J]. IEEE Transactions on Nuclear Science, 2022, 69(4): 792-803. |
12 | CHAUDHURI S K, MANDAL K C. Radiation detection using n-type 4H-SiC epitaxial layer surface barrier detectors[M]// Advanced Materials for Radiation Detection. Cham: Springer International Publishing, 2021: 183-209. |
13 | NEUDECK P G, SPRY D J, CHEN L Y, et al. Demonstration of 4H-SiC digital integrated circuits above 800 ℃[J]. IEEE Electron Device Letters, 2017, 38(8): 1082-1085. |
14 | 牟恋希, 曾翰森, 朱肖华, 等. CVD人造金刚石核辐射探测器研究进展[J]. 人工晶体学报, 2022, 51(5): 814-829. |
MU L X, ZENG H S, ZHU X H, et al. Research progress of nuclear radiation detectors with CVD synthetic diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 814-829 (in Chinese). | |
15 | 李 正. 用于高温强辐射场的SiC中子探测器技术研究[D]. 绵阳: 中国工程物理研究院, 2019. |
LI Z. Research on SiC neutron detector technology for high temperature and strong radiation field[D]. Mianyang: China Academy of Engineering Physics, 2019 (in Chinese). | |
16 | SIMON R C, JAMES A S, MICHAEL E P. Physics in nuclear medicine: Chapter6 interaction of radiation with matter[M]. 2th ed. Amsterdam: Saunders, 2012: 63-85. |
17 | MANNAN M A. Defect characterization of 4H-SiC by deep level transient spectroscopy (DLTS) and influence of defects on device performance[D]. Columbia, SC, USA: University of South Carolina, 2015. |
18 | 赵 鑫, 王利斌, 席善学, 等. 金刚石核辐射探测器研究进展[J]. 防化研究, 2024(1): 8-17. |
ZHAO X, WANG L B, XI S X, et al. Research progress of diamond nuclear radiation detectors[J]. CBRN Defense, 2024(1): 8-17 (in Chinese). | |
19 | CRNJAC A, JAKŠIĆ M, MATIJEVIĆ M, et al. Energy loss of MeV protons in diamond: stopping power and mean ionization energy[J]. Diamond and Related Materials, 2023, 132: 109621. |
20 | 胡青青. 碳化硅中子探测器的研究[D]. 长沙: 国防科学技术大学, 2012. |
HU Q Q. Study on silicon carbide neutron detector[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). | |
21 | WANG G B, SHENG D, YANG Y F, et al. High-quality and wafer-scale cubic silicon carbide single crystals[J]. Energy & Environmental Materials, 2024, 7(4): e12678. |
22 | HABERSTROH C, HELBIG R, STEIN R A. Some new features of the photoluminescence of SiC(6H), SiC(4H), and SiC(15R)[J]. 1994, 76(1): 509-513. |
23 | 胡智臣. 第三代半导体SiC单晶生长用高纯SiC粉制备研究[D]. 南昌: 南昌大学, 2023. |
HU Z C. Study on preparation of high purity SiC powder for the growth of the third generation semiconductor SiC single crystal[D]. Nanchang: Nanchang University, 2023 (in Chinese). | |
24 | 王守国, 张 岩. SiC材料及器件的应用发展前景[J]. 自然杂志, 2011, 33(1): 42-45+53. |
WANG S G, ZHANG Y. Application and development of SiC materials and devices[J]. Chinese Journal of Nature, 2011, 33(1): 42-45+53 (in Chinese). | |
25 | 刘兴昉, 陈 宇. 碳化硅半导体技术及产业发展现状[J]. 新材料产业, 2015(10): 12-19. |
LIU X F, CHEN Y. Present situation of silicon carbide semiconductor technology and industry development[J]. Advanced Materials Industry, 2015(10): 12-19 (in Chinese). | |
26 | 罗 东. 4H-SiC掺杂结构的第一性原理计算及其导电型单晶衬底的研究[D]. 太原: 太原理工大学, 2022. |
LUO D. First-principles calculation of 4H-SiC doped structure and study on its conductive single crystal substrate[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese). | |
27 | 彭彩云, 王艳辉, 张 航, 等. 4H-SiC材料p型掺杂的电子结构第一性原理研究[J]. 伊犁师范学院学报(自然科学版), 2017, 11(1): 33-38. |
PENG C Y, WANG Y H, ZHANG H, et al. A first principle study on electronic structure of p-type doped 4H-SiC[J]. Journal of Yili Normal University (Natural Science Edition), 2017, 11(1): 33-38 (in Chinese). | |
28 | JIANG Z Y, XU X H, WU H S, et al. Ab initio calculation of SiC polytypes[J]. Solid State Communications, 2002, 123(6/7): 263-266. |
29 | KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology: growth, characterization, devices and applications[M]. Singapore: John Wiley & Sons Singapore Pte.Ltd., 2014. |
30 | ZHAO S, GOHIL T, LIOLIOU G, et al. Soft X-ray detection and photon counting spectroscopy with commercial 4H-SiC Schottky photodiodes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 830: 1-5. |
31 | BERTUCCIO G, CACCIA S, PUGLISI D, et al. Advances in silicon carbide X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 193-196. |
32 | TORRISI L, SCIUTO A, CANNAVÒ A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials, 2017, 46(7): 4242-4249. |
33 | AKIMOV Y K. Silicon radiation detectors (review)[J]. Instruments and Experimental Techniques, 2007, 50(1): 1001. |
34 | HIBINO K, KASHIWAGI T, OKUNO S, et al. The design of diamond Compton telescope[J]. Astrophysics and Space Science, 2007, 309(1): 541-544. |
35 | LIU L Y, OUYANG X, RUAN J L, et al. Performance comparison between SiC and Si neutron detectors in deuterium-tritium fusion neutron irradiation[J]. IEEE Transactions on Nuclear Science, 2019, 66(4): 737-741. |
36 | KRUCHONAK U, ABOU EL-AZM S, AFANACIEV K, et al. Radiation hardness of GaAs∶Cr and Si sensors irradiated by electron beam[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 975: 164204. |
37 | TANAKA T, KANEKO J, TAKEUCHI D, et al. Diamond radiation detector made of an ultrahigh-purity type IIa diamond crystal grown by high-pressure and high-temperature synthesis[J]. 2001, 72(2): 1406-1410. |
38 | PERNEGGER H. High mobility diamonds and particle detectors[J]. Physica Status Solidi (a), 2006, 203(13): 3299-3314. |
39 | DAIKOKU H, KADO M, SEKI A, et al. Solution growth on concave surface of 4H-SiC crystal[J]. Crystal Growth & Design, 2016, 16(3): 1256-1260. |
40 | KORDINA O, HALLIN C, ELLISON A, et al. High temperature chemical vapor deposition of SiC[J]. Applied Physics Letters, 1996, 69(10): 1456-1458. |
41 | HOSHINO N, KAMATA I, TOKUDA Y, et al. Fast growth of n-type 4H-SiC bulk crystal by gas-source method[J]. Journal of Crystal Growth, 2017, 478: 9-16. |
42 | 杨祥龙, 徐现刚, 陈秀芳, 等. 宽禁带SiC单晶衬底研究进展[J]. 电力电子技术, 2017, 51(8): 12-16+23. |
YANG X L, XU X G, CHEN X F, et al. Recent development of wide bandgap semiconductor SiC substrates[J]. Power Electronics, 2017, 51(8): 12-16+23 (in Chinese). | |
43 | OHTANI N, FUJIMOTO T, KATSUNO M, et al. Growth of large high-quality SiC single crystals[J]. Journal of Crystal Growth, 2002, 237: 1180-1186. |
44 | LI H Q, CHEN X L, NI D Q, et al. An analysis of seed graphitization for sublimation growth of SiC bulk crystal[J]. Diamond and Related Materials, 2004, 13(1): 151-156. |
45 | 刘春俊. SiC单晶生长技术研究现状[J]. 中国照明电器, 2017(10): 18-21. |
LIU C J. Research status of SiC single crystal growth[J]. China Light & Lighting, 2017(10): 18-21 (in Chinese). | |
46 | HOFMANN D H, MÜLLER M H. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals[J]. Materials Science and Engineering: B, 1999, 61: 29-39. |
47 | KUSUNOKI K, YASHIRO N, OKADA N, et al. Growth of large diameter 4H-SiC by TSSG technique[J]. Materials Science Forum, 2013, 740/ 741/742: 65-68. |
48 | KUSUNOKI K, KAMEI K, OKADA N, et al. Top-seeded solution growth of 3 inch diameter 4H-SiC bulk crystal using metal solvents[J]. Materials Science Forum, 2014, 778/ 779/780: 79-82. |
49 | KUSUNOKI K, SEKI K, KISHIDA Y, et al. Development of solvent inclusion free 4H-SiC off-axis wafer grown by the top-seeded solution growth technique[J]. Materials Science Forum, 2018, 924: 31-34. |
50 | KUSUNOKI K, KISHIDA Y, SEKI K. Solution growth of 4-inch diameter SiC single crystal using Si-Cr based solvent[J]. Materials Science Forum, 2019, 963: 85-88. |
51 | LIU B T, YU Y, TANG X, et al. Optimization of crucible and heating model for large-sized silicon carbide ingot growth in top-seeded solution growth[J]. Journal of Crystal Growth, 2020, 533: 125406. |
52 | TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550. |
53 |
KAWANISHI S, YOSHIKAWA T, SHIBATA H. Thermomigration of molten Cr-Si-C alloy in 4H-SiC at 1873-2273 K[J]. Journal of Crystal Growth, 2019, 518: 73-80.
DOI |
54 | ZHANG Z S, CHEN L, DENG J, et al. Intrinsic ferromagnetism in 4H-SiC single crystal induced by Al-doping[J]. Applied Physics A, 2020, 126(9): 729. |
55 | 胡继超. 4H-SiC低压同质外延生长和器件验证[D]. 西安: 西安电子科技大学, 2017. |
HU J C. Low pressure homoepitaxial growth and device verification of 4H-SiC[D]. Xi’an: Xidian University, 2017 (in Chinese). | |
56 | ELLISON A, MAGNUSSON B, HEMMINGSSON C, et al. HTCVD growth of semi-insulating 4H-SiC crystals with low defect density[J]. MRS Online Proceedings Library, 2011, 640(1): 12. |
57 | ELLISON A, ZHANG J, PETERSON J, et al. High temperature CVD growth of SiC[J]. Materials Science and Engineering: B, 1999, 61: 113-120. |
58 | MYERS R L, SHISHKIN Y, KORDINA O, et al. High growth rates (>30 μm/h) of 4H-SiC epitaxial layers using a horizontal hot-wall CVD reactor[J]. Journal of Crystal Growth, 2005, 285(4): 486-490. |
59 | KORDINA O, HALLIN C, HENRY A, et al. Growth of SiC by “hot-wall” CVD and HTCVD[J]. Physica Status Solidi (b), 1997, 202(1): 321-334. |
60 | CRIPPA D, VALENTE G L, RUGGIERO A, et al. New achievements on CVD based methods for SiC epitaxial growth[J]. Materials Science Forum, 2005, 483/ 484/485: 67-72. |
61 | VIA F L, GALVAGNO G, ROCCAFORTE F, et al. High growth rate process in a SiC horizontal CVD reactor using HCl[J]. Microelectronic Engineering, 2006, 83(1): 48-50. |
62 | LA VIA F, GALVAGNO G, FIRRINCIELI A, et al. Epitaxial layers grown with HCl addition: a comparison with the standard process[J]. Materials Science Forum, 2006, 527/ 528/529: 163-166. |
63 | LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515. |
64 | FUJIBAYASHI H, ITO M, ITO H, et al. Development of a 150 mm 4H-SiC epitaxial reactor with high-speed wafer rotation[J]. Applied Physics Express, 2014, 7(1): 015502. |
65 | ITO M, FUJIBAYASHI H, ITO H, et al. Simulation study of high-speed wafer rotation effects in a vertical reactor for 4H-SiC epitaxial growth on 150 mm substrates[J]. Materials Science Forum, 2014, 778/ 779/780: 171-174. |
66 | MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. |
67 | RUDDY F H, SEIDEL J G, CHEN H Q, et al. High-resolution alpha-particle spectrometry using 4H silicon carbide semiconductor detectors[J]. IEEE Transactions on Nuclear Science, 2006, 53(3): 1713-1718. |
68 | MOSCATELLI F. Silicon carbide for UV, alpha, beta and X-ray detectors: results and perspectives[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 583(1): 157-161. |
69 | KALININA E V, IVANOV A M, STROKAN N B. Performance of p-n 4H-SiC film nuclear radiation detectors for operation at elevated temperatures (375 ℃)[J]. Technical Physics Letters, 2008, 34(3): 210-212. |
70 | CHAUDHURI S K, KRISHNA R M, ZAVALLA K J, et al. Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701: 214-220. |
71 | CHAUDHURI S K, ZAVALLA K J, MANDAL K C. High resolution alpha particle detection using 4H-SiC epitaxial layers: fabrication, characterization, and noise analysis[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 728: 97-101. |
72 | NGUYEN K V, CHAUDHURI S K, MANDAL K C. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers[C]// Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI. San Diego, California, USA. SPIE, 2014. |
73 | ZAŤKO B, DUBECKÝ F, ŠAGÁTOVÁ A, et al. High resolution alpha particle detectors based on 4H-SiC epitaxial layer[J]. Journal of Instrumentation, 2015, 10(4): C04009. |
74 | TORRISI L, FOTI G, GIUFFRIDA L, et al. Single crystal silicon carbide detector of emitted ions and soft X rays from power laser-generated plasmas[J]. 2009, 105(12): 123304. |
75 | ZAŤKO B, HRUBČÍN L, ŠAGÁTOVÁ A, et al. Study of the pulse height defect of 4H-SiC Schottky barrier detectors in heavy ion detection[C]// Applied Physics of Condensed Matter (Apcom 2021), PlesoŠtrbske, RepublicSlovak. AIP Publishing, 2021. |
76 | GÁL N, HRUBČÍN L, ANDREA Š, et al. High-resolution alpha-particle detector based on Schottky barrier 4H-SiC detector operated at elevated temperatures up to 500 ℃[J]. Applied Surface Science, 2023, 635: 157708. |
77 | MANDAL K C, CHAUDHURI S K, RUDDY F H. High-resolution alpha spectrometry using 4H-SiC detectors: a review of the state-of-the-art[J]. IEEE Transactions on Nuclear Science, 2023, 70(5): 823-830. |
78 | MANFREDOTTI C, GIUDICE A L, FASOLO F, et al. SiC detectors for neutron monitoring[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 552(1/2): 131-137. |
79 | GIUDICE ALO, FASOLO F, DURISI E, et al. Performances of 4H-SiC Schottky diodes as neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 583(1): 177-180. |
80 | KO G, KIM H Y, BANG J, et al. Electrical characterizations of neutron-irradiated SiC Schottky diodes[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 285-287. |
81 | HA J H, KANG S M, PARK S H, et al. A self-biased neutron detector based on an SiC semiconductor for a harsh environment[J]. Applied Radiation and Isotopes, 2009, 67(7/8): 1204-1207. |
82 | JANG HO H A, KANG S M, KIM H S, et al. 4H-SiC PIN-type semiconductor detector for fast neutron detection[J]. Progress in Nuclear Science and Technology, 2011, 1: 237-239. |
83 | 陈 雨, 蒋 勇, 吴 健, 等. SiC基中子探测器对热中子的响应[J]. 强激光与粒子束, 2013, 25(10): 2711. |
CHEN Y, JIANG Y, WU J, et al. Thermal neutron response of neutron detector based on SiC[J]. High Power Laser and Particle Beams, 2013, 25(10): 2711 (in Chinese). | |
84 | SZALKAI D, ISSA F, KLIX A, et al. First tests of silicon-carbide semiconductors as candidate neutron detector for the ITER Test Blanket Modules[C]// 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). June 23-27, 2013, Marseille, France. IEEE, 2013. |
85 | KANDLAKUNTA P, TAN C T, SMITH N, et al. Silicon carbide detectors for high flux neutron monitoring at near-core locations[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953: 163110. |
86 | COUTINHO J, TORRES V J B, CAPAN I, et al. Silicon carbide diodes for neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986: 164793. |
87 | BEDOGNI R, CALAMIDA A, CASTRO CAMPOY A I, et al. On neutron detection with silicon carbide and its resistance to large accumulated fluence[J]. The European Physical Journal Plus, 2022, 137(12): 1358. |
88 | BEDOGNI R, BORTOT D, POLA A, et al. Experimental characterization of semiconductor-based thermal neutron detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 51-54. |
89 | ZHANG X P, SONG Z H, ZHANG J F, et al. Measurement of the neutron energy response curve of 4H-SiC detector based fission target detection system at the CSNS Back-n white neutron source[J]. Journal of Instrumentation, 2023, 18(9): P09038. |
90 | 张明强, 钟国强, 黄 娟, 等. 基于4H-SiC探测器多球谱仪的聚变中子能谱测量研究[J]. 核技术, 2024, 47(9): 79-86. |
ZHANG M Q, ZHONG G Q, HUANG J, et al. Research on fusion neutron energy spectrum measurement using a Bonner sphere spectrometer based on a 4H-SiC detector[J]. Nuclear Techniques, 2024, 47(9): 79-86 (in Chinese). | |
91 | PÉREZ M, ZAMORANO F, FLETA C, et al. Characterization of new silicon carbide neutron detectors with thermal and fast neutrons[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024, 1069: 169968. |
92 | 张 林, 张义门, 张玉明, 等. 4H-SiC肖特基二极管γ射线探测器的模型与分析[J]. 强激光与粒子束, 2008, 20(5): 854-858. |
ZHANG L, ZHANG Y M, ZHANG Y M, et al. Model and analysis of 4H-SiC Schottky diode as γ-ray detector[J]. High Power Laser and Particle Beams, 2008, 20(5): 854-858 (in Chinese). | |
93 | BERTUCCIO G, CACCIA S, NAVA F, et al. Ultra low noise epitaxial 4H-SiC X-ray detectors[J]. Materials Science Forum, 2009, 615/ 616/617: 845-848. |
94 | BERTUCCIO G, PUGLISI D, PULLIA A, et al. X-γ ray spectroscopy with semi-insulating 4H-silicon carbide[J]. IEEE Transactions on Nuclear Science, 2013, 60(2): 1436-1441. |
95 | MANDAL K C, MUZYKOV P G, CHAUDHURI S K, et al. Low energy X-ray and γ-ray detectors fabricated on n-type 4H-SiC epitaxial layer[J]. IEEE Transactions on Nuclear Science, 2013, 60(4): 2888-2893. |
96 | 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的γ射线探测器[J]. 物理学报, 2016, 65(20): 216-223. |
DU Y Y, ZHANG C L, CAO X L. γ-ray detector based on n-type 4H-SiC Schottky barrier diode[J]. Acta Physica Sinica, 2016, 65(20): 216-223 (in Chinese). | |
97 | ILIC S D, ANDJELKOVIC M S, CARVAJAL M A, et al. Power silicon carbide Schottky diodes as current mode γ-radiation detectors[C]// 2021 IEEE 32nd International Conference on Microelectronics (MIEL). September 12-14, 2021. Nis, Serbia. IEEE, 2021: 337-340. |
98 | SONG J L, TANG X B, GONG P, et al. Development of a silicon carbide radiation detection system and experimentation of the system performance[J]. Applied Radiation and Isotopes, 2024, 214: 111555. |
[1] | 陈丹莹, 闫龙, 罗稼昊, 郑振宇, 姜勇, 张凯, 周宁, 廖宸梓, 郭世平. 垂直热壁CVD反应器中C/Si比对SiC高速同质外延生长的影响研究[J]. 人工晶体学报, 2025, 54(4): 569-580. |
[2] | 陈俊宏, 胡鉴闻, 魏钟鸣. 基于氧化镓微纳米结构的探测器研究进展[J]. 人工晶体学报, 2025, 54(3): 491-510. |
[3] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
[4] | 陈旭阳, 李昊勃, 秦华垚, 许明耀, 卢寅梅, 何云斌. 新型亚氧化物化学气相传输工艺低成本生长β-Ga2O3厚膜[J]. 人工晶体学报, 2025, 54(3): 445-451. |
[5] | 杨文娟, 卜予哲, 赛青林, 齐红基. 导模法生长氧化镓晶体中的位错缺陷及其分布特点[J]. 人工晶体学报, 2025, 54(3): 414-419. |
[6] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
[7] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
[8] | 黄东阳, 黄浩天, 潘明艳, 徐子骞, 贾宁, 齐红基. 垂直布里奇曼法生长氧化镓单晶及其性能表征[J]. 人工晶体学报, 2025, 54(2): 190-196. |
[9] | 邵双尧, 杨烁, 冯华钰, 贾志泰, 陶绪堂. 氧化镓雪崩光电探测器的研究进展[J]. 人工晶体学报, 2025, 54(2): 276-289. |
[10] | 雷莎莎, 龚巧瑞, 赵呈春, 孙晓慧, 杭寅. 宽禁带半导体ZnGa2O4研究进展[J]. 人工晶体学报, 2024, 53(8): 1289-1301. |
[11] | 谢贵久, 张文斌, 王岩, 宋振, 张兵. 碳化硅晶片减薄工艺对表面损伤的影响[J]. 人工晶体学报, 2024, 53(6): 967-972. |
[12] | 顾鹏, 雷沛, 叶帅, 胡晋, 吴戈. 顶部籽晶溶液法生长碳化硅单晶及其关键问题研究进展[J]. 人工晶体学报, 2024, 53(5): 741-759. |
[13] | 程佳辉, 杨磊, 王劲楠, 龚春生, 张泽盛, 简基康. 重掺杂P型SiC的熔融KOH刻蚀行为研究[J]. 人工晶体学报, 2024, 53(5): 773-780. |
[14] | 孙兴汉, 李纪虎, 张伟, 曾群锋, 张俊锋. 碳化硅化学机械抛光中材料去除非均匀性研究进展[J]. 人工晶体学报, 2024, 53(4): 585-599. |
[15] | 鲁雪松, 王万堂, 王蓉, 杨德仁, 皮孝东. 半导体碳化硅衬底的湿法氧化[J]. 人工晶体学报, 2024, 53(2): 181-193. |
阅读次数 | ||||||||||||||||
全文 |
|
|||||||||||||||
摘要 |
|
|||||||||||||||