[1] ROCCAFORTE F, FIORENZA P, GRECO G, et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices[J]. Microelectronic Engineering, 2018, 187: 66-77. [2] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [3] TSUCHIDA H, KAMATA I, MIYAZAWA T, et al. Recent advances in 4H-SiC epitaxy for high-voltage power devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 2-12. [4] KURODA N, SHIBAHARA K, YOO W, et al. Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts of the 1987 Conference on Solid State Devices and Materials. August 25-27, 1987. Nippon Toshi Center, Tokyo, Japan. The Japan Society of Applied Physics, 1987. [5] UEDA T, NISHINO H, MATSUNAMI H. Crystal growth of SiC by step-controlled epitaxy[J]. Journal of Crystal Growth, 1990, 104(3): 695-700. [6] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Online Proceedings Library, 1987, 97(1): 233-245. [7] KONG H S, GLASS J T, DAVIS R F. Chemical vapor deposition and characterization of 6H-SiC thin films on off-axis 6H-SiC substrates[J]. Journal of Applied Physics, 1988, 64(5): 2672-2679. [8] KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. [9] RUPP R, MAKAROV Y N, BEHNER H, et al. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation[J]. Physica Status Solidi B Basic Research, 1997, 202(1): 281-304. [10] KIMOTO T, COOPER J A. Fundamentals of Silicon Carbide Technology[M]. Singapore: Wiley, 2014. [11] MYERS-WARD R L, KORDINA O, SHISHKIN Z, et al. Increased growth rate in a SiC CVD reactor using HCl as a growth additive[J]. Materials Science Forum, 2005, 483/484/485: 73-76. [12] LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515. [13] LA VIA F, IZZO G, MAUCERI M, et al. 4H-SiC epitaxial layer growth by trichlorosilane (TCS)[J]. Journal of Crystal Growth, 2008, 311(1): 107-113. [14] PEDERSEN H, LEONE S, HENRY A, et al. Very high growth rate of 4H-SiC epilayers using the chlorinated precursor methyltrichlorosilane (MTS)[J]. Journal of Crystal Growth, 2007, 307(2): 334-340. [15] YAZDANFAR M, IVANOV I G, PEDERSEN H, et al. Reduction of structural defects in thick 4H-SiC epitaxial layers grown on 4° off-axis substrates[J]. Journal of Applied Physics, 2013, 113(22): 223502. [16] YAZDANFAR M, DANIELSSON Ö, KORDINA O, et al. Finding the optimum chloride-based chemistry for chemical vapor deposition of SiC[J]. ECS Journal of Solid State Science and Technology, 2014, 3(10): P320-P323. [17] CHOWDHURY I, CHANDRASEKHAR M V S, KLEIN P B, et al. High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor[J]. Journal of Crystal Growth, 2011, 316(1): 60-66. [18] SONG H Z, CHANDRASHEKHAR M V S, SUDARSHAN T S. Study of surface morphology, impurity incorporation and defect generation during homoepitaxial growth of 4H-SiC using dichlorosilane[J]. ECS Journal of Solid State Science and Technology, 2014, 4(3): P71-P76. [19] KOSHKA Y, LIN H D, MELNYCHUK G, et al. Epitaxial growth of 4H-SiC at low temperatures using CH3Cl carbon gas precursor: growth rate, surface morphology, and influence of gas phase nucleation[J]. Journal of Crystal Growth, 2006, 294(2): 260-267. [20] 钮应喜, 杨 霏, 温家良, 等. 4英寸碳化硅快速同质外延生长研究[J]. 智能电网, 2014, 2(12): 21-24. NIU Y X, YANG F, WEN J L, et al. Fast homo-epitaxy growth of 4-inch silicon carbide wafer[J]. Smart Grid, 2014, 2(12): 21-24 (in Chinese). [21] 闫果果, 张 峰, 钮应喜, 等. 氯基条件下4H-SiC衬底的同质外延生长研究[J]. 半导体光电, 2016, 37(3): 353-357. YAN G G, ZHANG F, NIU Y X, et al. Study on chloride-based homoepitaxial growth on 4° off-axis(0001)4H-SiC substrate[J]. Semiconductor Optoelectronics, 2016, 37(3): 353-357 (in Chinese). [22] FUJIBAYASHI H, ITO M, ITO H, et al. Development of a 150 mm 4H-SiC epitaxial reactor with high-speed wafer rotation[J]. Applied Physics Express, 2014, 7(1): 015502. [23] DAIGO Y, ISHIGURO A, ISHII S, et al. High in-wafer uniformity of growth rate and carrier concentration on n-type 4H-SiC epitaxial films achieved by high speed wafer rotation vertical CVD tool[J]. Materials Science Forum, 2018, 924: 88-91. [24] 韩跃斌, 蒲 勇, 施建新, 等. 高速旋转垂直热壁CVD外延生长n型4H-SiC膜的研究[J]. 人工晶体学报, 2023, 52(5): 918-924. HAN Y B, PU Y, SHI J X, et al. Epitaxial growth study of n-type 4H-SiC films by high-speed wafer rotation vertical hot-wall CVD equipment[J]. Journal of Synthetic Crystals, 2023, 52(5): 918-924 (in Chinese). [25] DANIELSSON Ö, KARLSSON M, SUKKAEW P, et al. A systematic method for predictive in silico chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2020, 124(14): 7725-7736. [26] WANG R, MA R H, DUDLEY M. Reduction of chemical reaction mechanism for halide-assisted silicon carbide epitaxial film deposition[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 3860-3866. [27] MEZIERE J, UCAR M, BLANQUET E, et al. Modeling and simulation of SiC CVD in the horizontal hot-wall reactor concept[J]. Journal of Crystal Growth, 2004, 267(3/4): 436-451. [28] CAVALLOTTI C, ROSSI F, RAVASIO S, et al. A kinetic analysis of the growth and doping kinetics of the SiC chemical vapor deposition process[J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9076-9087. [29] SONG B T, GAO B, HAN P F, et al. Numerical simulation of gas phase reaction for epitaxial chemical vapor deposition of silicon carbide by methyltrichlorosilane in horizontal hot-wall reactor[J]. Materials, 2021, 14(24): 7532. [30] SONG B T, GAO B, HAN P F, et al. Surface kinetic mechanisms of epitaxial chemical vapour deposition of 4H silicon carbide growth by methyltrichlorosilane-H2 gaseous system[J]. Materials, 2022, 15(11): 3768. [31] ITO M, FUJIBAYASHI H, ITO H, et al. Simulation study of high-speed wafer rotation effects in a vertical reactor for 4H-SiC epitaxial growth on 150 mm substrates[J]. Materials Science Forum, 2014, 778/779/780: 171-174. [32] MERK H J. The macroscopic equations for simultaneous heat and mass transfer in isotropic, continuous and closed systems[J]. Applied Scientific Research, Section A, 1959, 8(1): 73-99. [33] VENERONI A, MASI M. Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chlorine-containing species[J]. Chemical Vapor Deposition, 2006, 12(8/9): 562-568. [34] LU W L, FANG Y L, LI J, et al. Study and reduction of the surface pits in 4H-SiC epitaxial wafer[J]. Journal of Crystal Growth, 2023, 610: 127156. [35] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. [36] LEONE S, KORDINA O, HENRY A, et al. Gas-phase modeling of chlorine-based chemical vapor deposition of silicon carbide[J]. Crystal Growth & Design, 2012, 12(4): 1977-1984. [37] CHOKAWA K, DAIGO Y, MIZUSHIMA I, et al. First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC(0001) surface under conventional CVD and Halide CVD environments[J]. Japanese Journal of Applied Physics, 2021, 60(8): 085503. [38] DANIELSSON Ö, SUKKAEW P, OJAMÄE L, et al. Shortcomings of CVD modeling of SiC today[J]. Theoretical Chemistry Accounts, 2013, 132(11): 1398. [39] 于海群, 左 然, 徐 楠, 等. 垂直式MOCVD反应器中热泳力对浓度分布的影响分析[J]. 人工晶体学报, 2012, 41(4): 1059-1065. YU H Q, ZUO R, XU N, et al. Influence of thermophoretic force on precursor concentration and thin film growth in a vertical MOCVD reactor[J]. Journal of Synthetic Crystals, 2012, 41(4): 1059-1065 (in Chinese). [40] NISHIZAWA S, PONS M. Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor[J]. Chemical Vapor Deposition, 2006, 12(8/9): 516-522. [41] SUDARSHAN T S, RANA T, SONG H Z, et al. Trade-off between parasitic deposition and SiC homoepitaxial growth rate using halogenated Si-precursors[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3079-N3086. [42] RANA T, CHANDRASHEKHAR M V S, SUDARSHAN T S. Elimination of silicon gas phase nucleation using tetrafluorosilane (SiF4) precursor for high quality thick silicon carbide (SiC) homoepitaxy[J]. Physica Status Solidi (a), 2012, 209(12): 2455-2462. [43] MITROVIC B, GURARY A, QUINN W. Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling[J]. Journal of Crystal Growth, 2007, 303(1): 323-329. [44] DAIGO Y, ISHII S, KOBAYASHI T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD[J]. Japanese Journal of Applied Physics, 2019, 58: SBBK06. [45] FERRO G, CHAUSSENDE D. A new model for in situ nitrogen incorporation into 4H-SiC during epitaxy[J]. Scientific Reports, 2017, 7: 43069. [46] DAIGO Y, WATANABE T, ISHIGURO A, et al. Reduction of harmful effect due to by-product in CVD reactor for 4H-SiC epitaxy[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2020: 1-4. |