欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1208-1220.DOI: 10.16553/j.cnki.issn1000-985x.2025.0096

• 综合评述 • 上一篇    下一篇

全无机卤化物钙钛矿薄膜外延生长研究进展

单衍苏1(), 李兴牧1, 王霞2, 吴德华3, 曹丙强1()   

  1. 1.济南大学材料科学与工程学院,济南 250002
    2.济南大学物理科学与技术学院,济南 250002
    3.山东浪潮华光光电子股份有限公司,济南 250101
  • 收稿日期:2025-04-26 出版日期:2025-07-20 发布日期:2025-07-30
  • 通信作者: 曹丙强,博士,教授。E-mail:mse_caobq@ujn.edu.cn
  • 作者简介:单衍苏(1993—),男,山东省人,博士研究生。E-mail:1414024130@qq.com
    曹丙强,博士,教授。2020年6月担任山东省能源转换与存储关键材料工程实验室主任。兼任中国材料研究学会青年理事、山东省颗粒学会副理事长、山东省物理学会常务理事、山东硅酸盐学会常务理事、山东省激光学会常务理事、山东省光学工程学会常务理事等学术兼职。山东省“泰山学者”海外特聘教授,爱思唯尔(Elsevier)“中国高被引学者”。
  • 基金资助:
    国家重点研究发展计划(2022YFC3700801);山东省重点研发计划(2024CXGC010302);济南市教育局(JNSX 2023015)

Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films

SHAN Yansu1(), LI Xingmu1, WANG Xia2, WU Dehua3, CAO Bingqiang1()   

  1. 1.School of Materials Science and Engineering,University of Jinan,Jinan 250002,China
    2.School of Physics and Technology,University of Jinan,Jinan 250002,China
    3.Shandong Inspur Huaguang Optoelectronics Co. ,Ltd. ,Jinan 250002,China
  • Received:2025-04-26 Online:2025-07-20 Published:2025-07-30

摘要: 全无机卤化物钙钛矿作为一种具有可调节带隙的半导体材料,其热稳定性和光稳定性优于有机-无机杂化钙钛矿,近年来已在太阳能电池、紫外-可见光探测器、发光二极管等领域引发广泛关注,有望成为推动高性能光电器件产业化的关键材料。外延生长技术通过构建晶格匹配的异质界面可生长高质量的晶体薄膜,结合应变工程可对薄膜材料光电性能精准调控,已成为半导体器件制造领域的核心技术路径。随着全无机卤化物钙钛矿材料向商业光电子器件领域的拓展,精准调控薄膜结晶质量、降低缺陷态密度及优化界面特性成为该领域的关键技术瓶颈问题。本综述阐述了卤化物钙钛矿的材料结构及外延生长的基本原理,按照制备方法和衬底晶格匹配程度,分类讨论了全无机卤化物钙钛矿薄膜的外延生长工作。最后,展望了钙钛矿外延的未来方向,希望通过原位生长监测、精确的界面结构表征和规模化制造,进一步提高全无机卤化物钙钛矿的器件性能和应用。

关键词: 全无机卤化物钙钛矿; 半导体; 薄膜质量; 外延生长; 光电器件

Abstract: All-inorganic halide perovskites, as semiconductor materials with tunable bandgaps, exhibit superior thermal and photostability compared to organic-inorganic hybrid perovskites, and have recently garnered significant attention in solar cells, UV-Vis photodetectors, and light-emitting diodes, demonstrating potential as pivotal materials for advancing high-performance optoelectronic devices. Epitaxial growth technology, through the construction of lattice-matched heterointerfaces for high-quality crystalline film deposition, combined with strain engineering for photoelectronic property modulation, has emerged as a cornerstone strategy in semiconductor manufacturing. As all-inorganic halide perovskites progress toward commercial optoelectronic applications, critical challenges emerge in precisely controlling film crystallinity, reducing defect-state densities, and optimizing interface characteristics. This review comprehensively examines the material structures of halide perovskites and fundamental principles of epitaxial growth, discusses recent advances in epitaxial growth of all-inorganic halide perovskite films based on fabrication methodologies and substrate lattice-matching criteria in classification. Finally, this review outlines future research directions, proposing that in situ growth monitoring, atomic-scale interface characterization, and scalable manufacturing processes will further enhance device performance and application breadth of all-inorganic halide perovskites.

Key words: all-inorganic halide perovskite; semiconductor; thin-film quality; epitaxial growth; optoelectronic device

中图分类号: