
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1208-1220.DOI: 10.16553/j.cnki.issn1000-985x.2025.0096
单衍苏1(
), 李兴牧1, 王霞2, 吴德华3, 曹丙强1(
)
收稿日期:2025-04-26
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
曹丙强,博士,教授。E-mail:mse_caobq@ujn.edu.cn
作者简介:单衍苏(1993—),男,山东省人,博士研究生。E-mail:1414024130@qq.com基金资助:
SHAN Yansu1(
), LI Xingmu1, WANG Xia2, WU Dehua3, CAO Bingqiang1(
)
Received:2025-04-26
Online:2025-07-20
Published:2025-07-30
摘要: 全无机卤化物钙钛矿作为一种具有可调节带隙的半导体材料,其热稳定性和光稳定性优于有机-无机杂化钙钛矿,近年来已在太阳能电池、紫外-可见光探测器、发光二极管等领域引发广泛关注,有望成为推动高性能光电器件产业化的关键材料。外延生长技术通过构建晶格匹配的异质界面可生长高质量的晶体薄膜,结合应变工程可对薄膜材料光电性能精准调控,已成为半导体器件制造领域的核心技术路径。随着全无机卤化物钙钛矿材料向商业光电子器件领域的拓展,精准调控薄膜结晶质量、降低缺陷态密度及优化界面特性成为该领域的关键技术瓶颈问题。本综述阐述了卤化物钙钛矿的材料结构及外延生长的基本原理,按照制备方法和衬底晶格匹配程度,分类讨论了全无机卤化物钙钛矿薄膜的外延生长工作。最后,展望了钙钛矿外延的未来方向,希望通过原位生长监测、精确的界面结构表征和规模化制造,进一步提高全无机卤化物钙钛矿的器件性能和应用。
中图分类号:
单衍苏, 李兴牧, 王霞, 吴德华, 曹丙强. 全无机卤化物钙钛矿薄膜外延生长研究进展[J]. 人工晶体学报, 2025, 54(7): 1208-1220.
SHAN Yansu, LI Xingmu, WANG Xia, WU Dehua, CAO Bingqiang. Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films[J]. Journal of Synthetic Crystals, 2025, 54(7): 1208-1220.
图1 立方相卤化物钙钛矿结构[33]。(a)ABX3型立方单钙钛矿结构,A位阳离子被共顶角连接的B2+X6八面体包围;(b)A2B+B3+X6双钙钛矿结构,A位阳离子被交替排列的B+X6和B3+X6八面体包围
Fig. 1 Cubic-phase inorganic halide perovskite structures[33]. (a) ABX3-type cubic single perovskite structure, where A-site cations are surrounded by corner-sharing B2+X6 octahedra; (b) A2B+B3+X6-type double perovskite structure, where A-site cations are surrounded by alternating B+X6 and B3+X6 octahedra
图2 外延生长中的晶格匹配方式[37]。(a)共格、(b)准共格和(c)非共格,准共格与非共格外延因晶格失配度较高属于“准外延”范畴
Fig.2 Lattice registration modes in epitaxial growth[37]. (a) Commensurate registry; coincident registry (b) and incommensurate registry (c). Coincident registry and incommensurate registry belong to the “quasiepitaxial” regime due to their higher lattice mismatch
| 生长方法 | 材料 | 衬底 | 器件类型 | 性能 | 外延失配度 | 参考文献 |
|---|---|---|---|---|---|---|
| 反应性气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 反应性气相沉积 | CsSnBr3 | NaCl∶NaBr=1∶1 | — | — | 外延,0.01% | [ |
| 反应性气相沉积 | CsSnI3 | KCl | — | — | 外延,0.01% | [ |
| 化学气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 化学气相沉积 | CsPbBr3 | NaCl | — | — | 外延,3.9% | [ |
| 化学气相沉积 | CsPbBr3 | SrTiO3 | — | — | 准外延 | [ |
| 化学气相沉积 | CsPbBr3 | PbS | 可见光探测器 | R: 15 A/W, D: 2.65×1011 Jones, RT: 102/96 ms(450 nm, 5 V) | 外延 | [ |
| 化学气相沉积 | CsPbBr3 | Muscovite | — | — | 准外延 | [ |
| 化学气相沉积 | CsSnBr3 | Au | — | — | 准外延 | [ |
| 分子束外延 | CsPbBr3/CsSnBr3 | Au | — | — | 准外延 | [ |
| 远程外延 | CsPbBr3 | Sapphire | Micro-LED | EQE: 16.7%, brightness:4.0×10⁵ cd·m-2, Pixel size: 4 μm | 外延,0.97% | [ |
| 远程外延 | CsPbBr3 | NaCl | — | — | 外延, 3.9% | [ |
| 远程外延 | CsPbBr3 | CaF2 | — | — | 外延,6.0% | [ |
| 脉冲激光沉积 | CsPbX3 | SrTiO3 | — | — | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Muscovite | 可见光探测器 | R: 0.16 A/W, D: 2.41×1014 Jones, RT: 44.1/42.8 μs(405 nm, 10 V) | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Si | 可见光探测器 | R: 780 mA/W, D: 6.78 × 1011 Jones, RT: 4.2/6.5 ms(520 nm, 5 V) | 准外延 | [ |
| 脉冲激光沉积 | Cs2AgBrBr6 | SrTiO3 | 可见光探测器 | R: 12.1 A/W, 4.63×1012 Jones, Response time: 0.1/0.16 ms(530 nm, 5 V) | 准外延 | [ |
| 溶液外延 | CsPbBr3 | SrTiO3 | FET | Hole mobility: 3.9 cm2 V-1·s-1, On/Off: 105 | 准外延 | [ |
| 溶液外延 | Cs2AgBiBr6 | Cs3Bi2Br9 | X射线探测器 | Sensitivity: 1 390 µC·Gyair-1·cm-2, Detection limit: 37.48 nGyair·s-1 | 外延,0.4% | [ |
表1 全无机卤化物钙钛矿薄膜外延生长总结
Table 1 Summary of epitaxial growth of all-inorganic halide perovskites
| 生长方法 | 材料 | 衬底 | 器件类型 | 性能 | 外延失配度 | 参考文献 |
|---|---|---|---|---|---|---|
| 反应性气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 反应性气相沉积 | CsSnBr3 | NaCl∶NaBr=1∶1 | — | — | 外延,0.01% | [ |
| 反应性气相沉积 | CsSnI3 | KCl | — | — | 外延,0.01% | [ |
| 化学气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 化学气相沉积 | CsPbBr3 | NaCl | — | — | 外延,3.9% | [ |
| 化学气相沉积 | CsPbBr3 | SrTiO3 | — | — | 准外延 | [ |
| 化学气相沉积 | CsPbBr3 | PbS | 可见光探测器 | R: 15 A/W, D: 2.65×1011 Jones, RT: 102/96 ms(450 nm, 5 V) | 外延 | [ |
| 化学气相沉积 | CsPbBr3 | Muscovite | — | — | 准外延 | [ |
| 化学气相沉积 | CsSnBr3 | Au | — | — | 准外延 | [ |
| 分子束外延 | CsPbBr3/CsSnBr3 | Au | — | — | 准外延 | [ |
| 远程外延 | CsPbBr3 | Sapphire | Micro-LED | EQE: 16.7%, brightness:4.0×10⁵ cd·m-2, Pixel size: 4 μm | 外延,0.97% | [ |
| 远程外延 | CsPbBr3 | NaCl | — | — | 外延, 3.9% | [ |
| 远程外延 | CsPbBr3 | CaF2 | — | — | 外延,6.0% | [ |
| 脉冲激光沉积 | CsPbX3 | SrTiO3 | — | — | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Muscovite | 可见光探测器 | R: 0.16 A/W, D: 2.41×1014 Jones, RT: 44.1/42.8 μs(405 nm, 10 V) | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Si | 可见光探测器 | R: 780 mA/W, D: 6.78 × 1011 Jones, RT: 4.2/6.5 ms(520 nm, 5 V) | 准外延 | [ |
| 脉冲激光沉积 | Cs2AgBrBr6 | SrTiO3 | 可见光探测器 | R: 12.1 A/W, 4.63×1012 Jones, Response time: 0.1/0.16 ms(530 nm, 5 V) | 准外延 | [ |
| 溶液外延 | CsPbBr3 | SrTiO3 | FET | Hole mobility: 3.9 cm2 V-1·s-1, On/Off: 105 | 准外延 | [ |
| 溶液外延 | Cs2AgBiBr6 | Cs3Bi2Br9 | X射线探测器 | Sensitivity: 1 390 µC·Gyair-1·cm-2, Detection limit: 37.48 nGyair·s-1 | 外延,0.4% | [ |
图3 CsSnBr3和CsSnI3外延薄膜。(a)原位反射高能电子衍射监测CsSnBr3在NaCl衬底上的外延生长;(b)立方相CsSnBr3在NaCl上的俯视图(左)和侧视图(右)[41];(c)KCl衬底和CsSnI3的反射高能电子衍射图案;(d)CsSnI3外延薄膜的极图[42];(e)CsSnBr3和CsPbBr3外延薄膜XRD分析,左侧插图为1 cm×1 cm的外延薄膜光学照片,右侧插图为CsSnBr3薄膜的摇摆曲线。(f)CsSnBr3和CsPbBr3外延薄膜的SEM照片;(g)CsPbBr3 外延薄膜的Photo-Dember效应,光激发后不同时间点,沿薄膜厚度方向的电子-空穴浓度分布。插图中借助阻尼余弦函数描绘了快、慢载流子的不同输运轨迹。
Fig.3 Epitaxial thin films of CsSnBr3 and CsSnI3. (a) In situ reflection high-energy electron diffraction characterization of cubic-phase CsSnBr3 perovskite film during epitaxial growth on NaCl substrate; (b) top-view and side-view images of cubic-phase CsSnBr3 on epitaxial thin films[41]; (c) reflection high-energy electron diffraction patterns of the KCl substrate and CsSnI3; (d) pole figure of CsSnI3 epitaxial film[42]; (e) XRD scans of CsSnBr3 and CsPbBr3 epitaxial films, left insets: optical photographs of 1 cm×1 cm epitaxial films. Right inset: rocking curve of the reflection for CsSnBr3 film; (f) SEM images of halide perovskite epitaxial films; (g) photo-dember effect in CsPbBr3 epitaxial thin films, showing the electron-hole concentration distribution along the film thickness direction at different time points after photoexcitation, the inset illustrates the distinct transport trajectories of fast and slow carriers using a damped cosine function
图4 STO衬底外延生长CsPbBr3薄膜[44]。(a)CsPbBr3(100)和STO(100)晶面之间的晶格匹配的示意图;(b)CsPbBr3外延薄膜的XRD图谱,插图是CsPbBr3/STO(100)样品的13°~32°的放大图谱;(c)CsPbBr3外延纳米片的光学照片和(d)CsPbBr3外延薄膜的SEM照片
Fig.4 Epitaxial growth of CsPbBr3 thin films on STO substrates[44]. (a) Schematic illustration of lattice matching between CsPbBr3 (100) and STO (100) planes; (b) XRD patterns of epitaxially grown CsPbBr3 film, inset shows a magnified view of the 13°~32° range for the CsPbBr3/STO (100) sample; (c) optical image of CsPbBr3 nanosheets; (d) SEM image of CsPbBr3 epitaxial film
图5 (a)CsPbBr3/石墨烯/NaCl外延结构中CsPbBr3薄膜与NaCl晶体(224)峰的倒易空间图谱[50];(b)石墨烯/CaF2上外延生长的CsPbBr3薄膜的SEM图像(上)和光学照片(下)[50];(c)离子外延和远程外延初始阶段的原子成核过程示意图[50];(d)在蓝宝石衬底外远程延生长钙钛矿示意图[49];(e)外延CsPbBr3薄膜TEM照片[49];(f)外延生长的CsPbCl3、CsPbCl1.3Br1.7、CsPbBr3、CsPbBr2.1I0.9和CsPbBrI2钙钛矿薄膜的光学图像[49];(g)钙钛矿micro-LED显示器示意图;(h)钙钛矿Micro-LED显示的静态图像;(i)钙钛矿micro-LED 显示器的视频截图
Fig.5 (a) Reciprocal space mapping of the CsPbBr3 thin film and NaCl (224) peak in the CsPbBr3/graphene/NaCl epitaxial heterostructure[50]; (b) top: SEM image and bottom: optical photograph of epitaxial CsPbBr3 films on Graphene /CaF2[50]; (c) schematic illustration of atomic nucleation processes during the initial stages of ionic epitaxy and remote epitaxy[50]; (d) schematic illustration of remote epitaxial growth of perovskites using a sapphire substrate[49]; (e) TEM image of epitaxial CsPbBr3 film[49]; (f) optical images of epitaxial perovskite films (CsPbCl3, CsPbCl1.3Br1.7, CsPbBr3, CsPbBr2.1I0.9, and CsPbBrI2)[49]; (g) schematic diagram of the perovskite micro-LED display; (h) static image from the perovskite micro-LED display; (i) video frame of the perovskite micro-LED display
图6 磁控溅射法制备大面积CsPbBr3钙钛矿薄膜[59]。(a)磁控溅射生长大面积CsPbBr3薄膜实物图及(b)示意图;(c)本征CsPbBr3薄膜的超快动力学研究和(d)不同时刻的瞬态吸收光谱,表明本征薄膜不存在缺陷态能级;(e)本征薄膜的吸收光谱,荧光光谱和(f)荧光寿命谱;(g)CsPbBr3薄膜变温电阻率及(h)热激活模型拟合曲线,拟合活化能为2.24 eV
Fig.6 Fabrication of large-area CsPbBr3 perovskite films via magnetron sputtering [59]. (a) Photograph and (b) schematic diagram of magnetron-sputtered large-area CsPbBr3 films; (c) ultrafast dynamics study and (d) transient absorption spectra at different delay times for intrinsic CsPbBr3 films, demonstrating the absence of defect states; (e) absorption spectra; (f) photoluminescence spectra, and fluorescence lifetime decay profiles of intrinsic films; (g) temperature-dependent resistivity measurements and (h) thermal activation model fitting for CsPbBr3 films, yielding an activation energy of 2.24 eV
图7 (a)不同卤素比的CsPbX3外延薄膜XRD图谱[51];(b)CsPbIBr2薄膜(001)方向的倒易空间图像[51];(c)不同衬底上沉积的CsPbI2Br薄膜的光致发光谱[51];(d)p-Si/n-CsPbBr3外延薄膜异质结在 520和 650 nm光照射下器件的能带图[53];(e)硅衬底上CsPbBr3薄膜的TEM和图中白色区域放大的TEM照片,显示了Si和 CsPbBr3 薄膜之间具有约2 nm过渡层[53];(f)p-Si/n-CsPbBr3外延薄膜异质结光电探测器的I-V曲线[53];(g)p-Si/n-CsPbBr3光电探测器的光电流和外量子效率曲线[53]
Fig.7 (a) XRD patterns of epitaxial films with varying halide ratios[51], (b) reciprocal space mapping of the CsPbIBr2 film along the (001) orientation[51], (c) steady-state photoluminescence spectra of CsPbI2Br films deposited on different substrates[51], (d) energy band diagrams of the p-Si/n-CsPbBr3 epitaxial film heterojunction under 520 nm and 650 nm laser illumination[53], (e) cross-sectional TEM image of the CsPbBr3 film on a Si substrate, and magnified TEM view of the white-boxed region, revealing an interface between Si and CsPbBr3 with a ~2 nm transition layer[53], (f) I-V curves of the p-Si/n-CsPbBr3 epitaxial heterojunction photodetector[53]; (g) photocurrent and external quantum efficiency curve of the p-Si/n-CsPbBr3 photodetector[53]
图8 双钙钛矿Cs2AgBiBr6外延薄膜及光电探测器[54]。(a)Cs2AgBiBr6(100)和STO(100)晶面之间的晶格匹配示意图;(b)Cs2AgBiBr6外延膜的(100)方向倒易空间图谱;(c)外延Cs2AgBiBr6薄膜的SEM照片;(d)Cs2AgBiBr6外延膜的光电器件示意图;(e)不同光强下器件的I-V曲线
Fig.8 Double perovskite Cs2AgBiBr6 epitaxial films and photodetectors[54]. (a) Schematic illustration of lattice matching between the Cs2AgBiBr6 (100) and STO (100) planes; (b) reciprocal space mapping of the epitaxial Cs2AgBiBr6 film along the (100) orientation; (c) SEM image of the epitaxial Cs2AgBiBr6 film; (d) schematic of the optoelectronic device based on the Cs2AgBiBr6 epitaxial film; (e) I-V curves of device at varying irradiation power densities
图9 (a)α-FAPbI3外延薄膜的光学图像,比例尺为4 mm[63];(b)α-FAPbI3外延薄膜的截面SEM照片,比例尺2 μm[63];(c)α-FAPbI3与不同衬底的(104)非对称倒易空间图谱[63];(d)Au/α-FAPbI3/氧化铟锡光电导结构光电探测器的I-V特性[63];(e)CsPbBr3在STO(100)上的SEM照片[64];(f)PbI2在 Au/Si(111)上的SEM照片[64];(g)NaCl在Ag/Au/Si(100)上的光学图像[64]
Fig.9 (a) Optical images of the α-FAPbI3 epitaxial film. Scale bar: 4 mm[63],(b) cross-sectional SEM image of the α-FAPbI3 epitaxial film. Scale bar: 2 μm[63], (c) (104) asymmetric reciprocal space mapping of α-FAPbI3 on different substrates[63], (d) I-V characteristics of the Au/α-FAPbI3/ITO photoconductive structure photodetector[63], (e) SEM image of CsPbBr3 on STO (100)[64], (f) SEM image of PbI2 on Au/Si (111)[64], (g) optical image of NaCl on Au/Ag/Si (100)[64]
图10 (a)CsPbBr3外延薄膜SEM照片和(b)极图[55];(c)FET器件结构示意图[55];(d)FET器件的扫描传输曲线[55];(e)上:Cs3Bi2Br9单晶衬底光学照片,下:异质结光学照片[56];(f)外延Cs2AgBiBr6单晶薄膜(001)面的XRD极图[56];(g)异质结和Cs3Bi2Br9在660 V·mm-1下的暗电流漂移[56];(h)不同电场下异质结探测器的电流密度剂量率依赖性[56]
Fig.10 (a) SEM image and (b) pole figure of epitaxial CsPbBr3 films[55]; (c) FET device structure schematic diagram[55]; (d) scan transfer curves of the FET device[55]; (e) top: optical image of a Cs3Bi2Br9 single-crystal substrate[56]; bottom: optical image of the heterostructure; (f) XRD pole figure of the epitaxial Cs2AgBiBr6 single-crystal film along the (001) orientation, (g) dark current drift of heterostructure and Cs3Bi2Br9 under an electric field of 660 V·mm-1; (h) current density versus dose rate dependence of the heterostructure detector under varying electric fields[56]
| [1] | PACCHIONI G. Highly efficient perovskite LEDs[J]. Nature Reviews Materials, 2021, 6(2): 108. |
| [2] | ASSADI M K, BAKHODA S, SAIDUR R, et al. Recent progress in perovskite solar cells[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2812-2822. |
| [3] | AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics [J]. Adv Mater, 2017, 29(41): 1605242. |
| [4] | STYLIANAKIS M M, MAKSUDOV T, PANAGIOTOPOULOS A, et al. Inorganic and hybrid perovskite based laser devices: a review [J]. Materials, 2019, 12(6): 859. |
| [5] | ZANATTA A R. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells[J]. Results in Optics, 2022, 9: 100320. |
| [6] | TAI Q D, TANG K C, YAN F. Recent progress of inorganic perovskite solar cells[J]. Energy & Environmental Science, 2019, 12(8): 2375-2405. |
| [7] | LIANG J, WANG C, WANG Y, et al. All-inorganic perovskite solar cells [J]. Journal of American Chemical Society, 2016, 138(49): 15829-32. |
| [8] | SHEN C, YE T, YANG P, et al. All-inorganic perovskite solar cells: defect regulation and emerging applications in extreme environments [J]. Adv Mater, 2024, 36(25): 2401498. |
| [9] | SHAO Y C, XIAO Z G, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5: 5784. |
| [10] | UNGER E L, HOKE E T, BAILIE C D, et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells[J]. Energy & Environmental Science, 2014, 7(11): 3690-3698. |
| [11] | CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. |
| [12] | SEO J, NOH J H, SEOK S I. Rational strategies for efficient perovskite solar cells[J]. Accounts of Chemical Research, 2016, 49(3): 562-572. |
| [13] | MILLER L M, COLEMAN J J. Metalorganic chemical vapor deposition[J]. Critical Reviews in Solid State and Materials Sciences, 1988, 15(1): 1-26. |
| [14] | LI X, BI D Q, YI C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62. |
| [15] | NIE W Y, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221): 522-525. |
| [16] | PALMSTRØM C J. Epitaxial heusler alloys: new materials for semiconductor spintronics[J]. MRS Bulletin, 2003, 28(10): 725-728. |
| [17] | PALMSTRØM C J. Epitaxy of dissimilar materials[J]. Annual Review of Materials Science, 1995, 25: 389-415. |
| [18] | RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices[J]. Nature Reviews Materials, 2019, 4(4): 257-268. |
| [19] | HUANG M, RUOFF R S. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates[J]. Accounts of Chemical Research, 2020, 53(4): 800-811. |
| [20] | CHENG C W, SHIU K T, LI N, et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics[J]. Nature Communications, 2013, 4: 1577. |
| [21] | DAI P, TAN M, WU Y Y, et al. Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2015, 413: 71-75. |
| [22] | GOMYO A, SUZUKI T, KOBAYASHI K, et al. Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band‐gap energy[J]. Applied Physics Letters, 1987, 50(11): 673-675. |
| [23] | BERTNESS K A, KURTZ S R, FRIEDMAN D J, et al. 29.5%‐efficient GaInP/GaAs tandem solar cells[J]. Applied Physics Letters, 1994, 65(8): 989-991. |
| [24] | LI W, LAMMASNIEMI J, KAZANTSEV A B, et al. GaInP/AlInP tunnel junction for GaInP/GaAstandem solar cells[J]. Electronics Letters, 1998, 34(4): 406-407. |
| [25] | LEE J, WU J, RYU J H, et al. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics[J]. Small, 2012, 8(12): 1851-1856. |
| [26] | KING R R, LAW D C, EDMONDSON K M, et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells[J]. Applied Physics Letters, 2007, 90(18): 183516. |
| [27] | YANG T F, WANG X, ZHENG B Y, et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures[J]. ACS Nano, 2019, 13(7): 7996-8003. |
| [28] | PARROTT E S, PATEL J B, HAGHIGHIRAD A A, et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films[J]. Nanoscale, 2019, 11(30): 14276-14284. |
| [29] | HILT F, HOVISH M Q, ROLSTON N, et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air[J]. Energy & Environmental Science, 2018, 11(8): 2102-2113. |
| [30] | MALI S S, PATIL J V, HONG C K. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells[J]. Nano Letters, 2019, 19(9): 6213-6220. |
| [31] | YE S Y, RAO H X, ZHAO Z R, et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I[J]. Journal of the American Chemical Society, 2017, 139(22): 7504-7512. |
| [32] | QIAO H W, YANG S, WANG Y, et al. A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor[J]. Advanced Materials, 2019, 31(5): e1804217. |
| [33] | BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. |
| [34] | WANG Y, WANG Y, DOHERTY T A S, et al. Octahedral units in halide perovskites[J]. Nature Reviews Chemistry, 2025, 9(4): 261-277. |
| [35] | KIESLICH G, SUN S J, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog[J]. Chemical Science, 2014, 5(12): 4712-4715. |
| [36] | LI Z, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. |
| [37] | KUMAH D P, NGAI J H, KORNBLUM L. Epitaxial oxides on semiconductors: from fundamentals to new devices[J]. Advanced Functional Materials, 2020, 30(18): 1901597. |
| [38] | ROYER L. Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d’espèces différentes[J]. Bulletin de la Société Française de Minéralogie, 1928, 51(1): 7-159. |
| [39] | CHEN P, LUNT R R. Organic step edge driven heteroquasiepitaxial growth of organic multilayer films[J]. Advanced Materials Interfaces, 2016, 3(17): 1600401. |
| [40] | LUNT R R, SUN K, KRÖGER M, et al. Ordered organic-organic multilayer growth[J]. Physical Review B, 2011, 83(6): 064114. |
| [41] | WANG L L, CHEN P, THONGPRONG N, et al. Unlocking the single-domain epitaxy of halide perovskites[J]. Advanced Materials Interfaces, 2017, 4(22): 1701003. |
| [42] | WANG L L, CHEN P, KUTTIPILLAI P S, et al. Epitaxial stabilization of tetragonal cesium tin iodide[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32076-32083. |
| [43] | WANG Y P, SUN X, CHEN Z Z, et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics[J]. Advanced Materials, 2017, 29(35): 1702643. |
| [44] | CHEN J, MORROW D J, FU Y P, et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3)[J]. Journal of the American Chemical Society, 2017, 139(38): 13525-13532. |
| [45] | WANG Y F, LI X Z, LIU P, et al. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. Journal of Semiconductors, 2021, 42(11): 112001. |
| [46] | WANG Y L, JIA C C, FAN Z, et al. Large-area synthesis and patterning of all-inorganic lead halide perovskite thin films and heterostructures[J]. Nano Letters, 2021, 21(3): 1454-1460. |
| [47] | ABBASLI M, HIEULLE J, SCHRAGE J, et al. Tin halide perovskite epitaxial films on gold surfaces: atomic structure and stability[J]. Advanced Functional Materials, 2024, 34(40): 2403680. |
| [48] | RIEGER J, KIßLINGER T, RAABGRUND A, et al. Epitaxial inorganic metal-halide perovskite films with controlled surface terminations[J]. Physical Review Materials, 2023, 7(3): 035403. |
| [49] | YUAN M, FENG J G, LI H, et al. Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays[J]. Nature Nanotechnology, 2025, 20(3): 381-387. |
| [50] | JIANG J, SUN X, CHEN X C, et al. Publisher Correction: carrier lifetime enhancement in halide perovskite via remote epitaxy[J]. Nature Communications, 2019, 10(1): 4783. |
| [51] | ZHOU Y, YUAN B L, WEI H M, et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition[J]. Applied Physics Letters, 2022, 120(11): 112109. |
| [52] | XING R F, SHI P, WU Z F, et al. Van der waals epitaxial deposition of CsPbBr3 films for flexible optoelectronic applications[J]. ACS Applied Electronic Materials, 2022, 4(3): 1351-1358. |
| [53] | CUI W Y, ZHOU Y, CHENG X M, et al. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity[J]. Applied Physics Letters, 2024, 125(18): 182102. |
| [54] | SHAN Y S, CUI W Y, ZHOU Y, et al. Lead-free perovskite Cs2AgBiBr6 epitaxial thin films for high-performance and air-stable photodetectors[J]. Journal of Materials Chemistry C, 2025, 13(18): 9072-9082. |
| [55] | YANG T B, JIN C, QU J T, et al. Solution epitaxy of halide perovskite thin single crystals for stable transistors[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37840-37848. |
| [56] | LIU H J, SUN X, LIU J X, et al. Lead-free perovskite Cs2AgBiBr6/Cs3Bi2Br9 single-crystalline heterojunction X-ray detector with enhanced sensitivity and ultra-low detection limit[J]. Science China Materials, 2025, 68(2): 561-570. |
| [57] | DA B C, HERATH M D, WANG D W, et al. High-voltage kV-class AlN metal-semiconductor field-effect transistors on single-crystal AlN substrates[J]. Applied Physics Express, 2024, 17(10): 104002. |
| [58] | JI Y J, KIM K S, KIM K H, et al. A brief review of plasma enhanced atomic layer deposition of Si3N4 [J]. Applied Science and Convergence Technology, 2019, 28(5): 142-147. |
| [59] | XU F, LI Y J, YUAN B L, et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering[J]. Journal of Applied Physics, 2021, 129(24): 245303. |
| [60] | MA X Y, UNIVERSITY W, et al. Plasma sputtering halide perovskite for photovoltaic applications[J]. ACS Materials Letters, 2024, 6(11): 5076-5092. |
| [61] | YUAN B L, WEI H M, LI J W, et al. Epitaxial growth of quasi-intrinsic CsPbBr3 film on a SrTiO3 substrate by pulsed laser deposition[J]. ACS Applied Electronic Materials, 2021, 3(12): 5592-5600. |
| [62] | JI L, HSU H Y, LEE J C, et al. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites[J]. Nano Letters, 2018, 18(2): 994-1000. |
| [63] | CHEN Y M, LEI Y S, LI Y H, et al. Strain engineering and epitaxial stabilization of halide perovskites[J]. Nature, 2020, 577(7789): 209-215. |
| [64] | KELSO M V, MAHENDERKAR N K, CHEN Q Z, et al. Spin coating epitaxial films[J]. Science, 2019, 364(6436): 166-169. |
| [65] | LU C J, TANG L L. Comment on “Spin coating epitaxial films”[J]. Science, 2019, 365(6458): eaay3894. |
| [1] | 马文君, 张国栋, 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂. 卤化物钙钛矿半导体单晶及核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(7): 1091-1099. |
| [2] | 萧岱桢, 高荣, 陈怡, 米启兮. 全无机锡钙钛矿CsSnBr3晶体的生长和电学、光学性能研究[J]. 人工晶体学报, 2025, 54(7): 1245-1255. |
| [3] | 赵昊, 余博文, 李琪, 李光清, 刘医源, 林娜, 李阳, 穆文祥, 贾志泰. Mist-CVD法生长LiGa5O8单晶薄膜及其导电机理研究[J]. 人工晶体学报, 2025, 54(6): 997-1004. |
| [4] | 李晴雯, 钟敏. 高效可重现的SbI3声化学合成及其薄膜制备[J]. 人工晶体学报, 2025, 54(6): 1042-1049. |
| [5] | 杨再洪, 周灿, 范柳燕, 张燕辉, 陈泽中, 陈平平. 机器学习在分子束外延生长的应用进展[J]. 人工晶体学报, 2025, 54(6): 924-934. |
| [6] | 杜青波, 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强. 宽禁带半导体碳化硅基核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(5): 737-756. |
| [7] | 李帅, 张蕾. 近红外Ⅳ-Ⅵ族半导体量子点光纤的研究进展[J]. 人工晶体学报, 2025, 54(5): 757-771. |
| [8] | 杨文娟, 卜予哲, 赛青林, 齐红基. 导模法生长氧化镓晶体中的位错缺陷及其分布特点[J]. 人工晶体学报, 2025, 54(3): 414-419. |
| [9] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
| [10] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
| [11] | 陈俊宏, 胡鉴闻, 魏钟鸣. 基于氧化镓微纳米结构的探测器研究进展[J]. 人工晶体学报, 2025, 54(3): 491-510. |
| [12] | 陈旭阳, 李昊勃, 秦华垚, 许明耀, 卢寅梅, 何云斌. 新型亚氧化物化学气相传输工艺低成本生长β-Ga2O3厚膜[J]. 人工晶体学报, 2025, 54(3): 445-451. |
| [13] | 黄东阳, 黄浩天, 潘明艳, 徐子骞, 贾宁, 齐红基. 垂直布里奇曼法生长氧化镓单晶及其性能表征[J]. 人工晶体学报, 2025, 54(2): 190-196. |
| [14] | 邵双尧, 杨烁, 冯华钰, 贾志泰, 陶绪堂. 氧化镓雪崩光电探测器的研究进展[J]. 人工晶体学报, 2025, 54(2): 276-289. |
| [15] | 魏雨夕, 马昕宇, 江泽俊, 魏杰, 罗小蓉. 超宽禁带氧化镓功率器件新结构及其电热特性研究进展[J]. 人工晶体学报, 2025, 54(2): 263-275. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS