
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1509-1524.DOI: 10.16553/j.cnki.issn1000-985x.2025.0066
鹿润林1(
), 郑丽丽1(
), 张辉2, 王人松3, 胡动力3
收稿日期:2025-04-01
出版日期:2025-09-20
发布日期:2025-09-23
通信作者:
郑丽丽
作者简介:鹿润林(1999—),男,安徽省人,博士研究生。E-mail:lurl23@mails.tsinghua.edu.cn
LU Runlin1(
), ZHENG Lili1(
), ZHANG Hui2, WANG Rensong3, HU Dongli3
Received:2025-04-01
Online:2025-09-20
Published:2025-09-23
Contact:
ZHENG Lili
摘要: 本文针对典型8英寸热壁卧式SiC外延生长系统建立了考虑衬底转动、Si-C-Cl-H体系反应机理和多物理过程热质输运的数学模型,并用于三维数值仿真模拟研究。此外,本文特别研究了不同衬底表面平均温度、进气流量、进气Si/H2比对外延层生长速率和厚度均匀性的影响。结果表明:衬底转动提高了衬底表面温度分布均匀性,SiC瞬时生长速率主要受表面附近生长组分浓度影响;外延层厚度均匀性主要受SiC瞬时生长速率沿流动方向的分布影响,衬底前缘和后缘的瞬时生长速率须相互补偿以提高厚度均匀性;提高衬底表面平均温度、降低进气流量和降低进气Si/H2比均导致瞬时生长速率沿流动方向的分布由上凸向下凸转变,衬底表面实际生长速率的分布从边缘低中间高逐渐过渡为边缘高中间低;所考察的参数范围内进气流量对瞬时生长速率分布影响最大。
中图分类号:
鹿润林, 郑丽丽, 张辉, 王人松, 胡动力. 热壁CVD制备工艺对8英寸SiC外延层厚度均匀性的影响[J]. 人工晶体学报, 2025, 54(9): 1509-1524.
LU Runlin, ZHENG Lili, ZHANG Hui, WANG Rensong, HU Dongli. Impacts of Hot Wall CVD Process Conditions on Thickness Uniformity of 8-Inch SiC Epitaxial Layer[J]. Journal of Synthetic Crystals, 2025, 54(9): 1509-1524.
图1 外延系统结构图。(a)x-z立体剖面图;(b)y-z断面图;(c)x-y剖面图
Fig.1 Schematic diagram of the epitaxial system. (a) Longitudinal x-z section; (b) y-z section of hot zone structure; (c) x-y section of the reaction chamber
图2 外延系统计算域和边界条件(结构尺寸非等比例绘制),图中给出三维计算域的x-z截面
Fig.2 Schematic diagram of the computational domain and boundary conditions of the epitaxial system (not to scale). Only the x-z section of the three-dimensional computational domain is presented
| Parameter | Material | Value |
|---|---|---|
Density/ (kg·m-3) | Susceptor[ | 1 740 |
| Insulation[ | 170 | |
| Quartz glass[ | 2 200 | |
Thermal conductivity/ (W·m-1·K-1) | Susceptor[ | 128.595-0.126 895T+6.884 01×10-5T2-1.799 46×10-8T3+1.791 50×10-12T4 |
| Insulation[ | -0.067 92+0.177 2exp(3.348×10-12T)+0.135 5exp(9.048×10-4T) | |
| Quartz glass[ | -0.985 470+0.018 209 1T-5.290 51×10-5T2+7.552 53×10-8T3-5.008 12×10-11T4+1.311 32×10-14T5 | |
Heat capacity/ (J·kg-1·K-1) | Susceptor[ | -159.879+3.655 02T-2.380 56×10-3T2+7.382 78×10-7T3-8.797 87×10-11T4 |
| Insulation[ | 600 | |
| Quartz glass[ | 931.7+0.256T-5.90×107/T2 |
表1 仿真中使用的材料热物性(温度T单位为K)
Table 1 Thermophysical of materials used in simulations, with temperature T in K unit
| Parameter | Material | Value |
|---|---|---|
Density/ (kg·m-3) | Susceptor[ | 1 740 |
| Insulation[ | 170 | |
| Quartz glass[ | 2 200 | |
Thermal conductivity/ (W·m-1·K-1) | Susceptor[ | 128.595-0.126 895T+6.884 01×10-5T2-1.799 46×10-8T3+1.791 50×10-12T4 |
| Insulation[ | -0.067 92+0.177 2exp(3.348×10-12T)+0.135 5exp(9.048×10-4T) | |
| Quartz glass[ | -0.985 470+0.018 209 1T-5.290 51×10-5T2+7.552 53×10-8T3-5.008 12×10-11T4+1.311 32×10-14T5 | |
Heat capacity/ (J·kg-1·K-1) | Susceptor[ | -159.879+3.655 02T-2.380 56×10-3T2+7.382 78×10-7T3-8.797 87×10-11T4 |
| Insulation[ | 600 | |
| Quartz glass[ | 931.7+0.256T-5.90×107/T2 |
图3 外延生长系统内反应区下表面温度分布,衬底旋转速率分别为0(a)和50 r/min(b),气流方向自左向右
Fig.3 Distributions of temperature on the lower surface of reaction chamber with substrate rotation speed of 0 (a) and 50 r/min (b), and gas flows from left to right
图4 反应区下表面处主要组分摩尔分数沿流动方向变化。(a)C-H组分和有机硅组分;(b)Si-H-Cl组分
Fig.4 Mole fraction versus susceptor coordinate along the center line of the lower surface of reaction chamber. (a) C-H species and organosilicon species; (b) Si-H-Cl species
图5 反应区下表面处(实线)和表面上方11 mm处气流内(虚线)的温度和生长组分摩尔分数沿流动方向变化,分别为温度(a)、C2H2摩尔分数(b)、SiCl摩尔分数(c)、Si摩尔分数(d)
Fig.5 Temperature and mole fraction of growth species versus susceptor coordinate along the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line), including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), mole fraction of Si (d)
图6 基准算例中反应区内瞬时生长速率分布(单位:μm·h-1)。(a)反应区下表面;(b)反应区上表面,气流方向自左向右
Fig.6 Instantaneous growth rate distribution in the reaction zone in the baseline case (unit: μm·h-1). (a) Lower surface of the reaction zone; (b) upper surface of the reaction zone, and gas flows from left to right
图7 反应区下表面处(实线)和上表面处(点划线)的瞬时生长速率(a)和温度(b)沿流向变化
Fig.7 Instantaneous growth rate (a) and temperature (b) change along the flow direction at the lower surface (solid line) and the upper surface (dotted line) of the reaction chamber
图9 衬底表面沿径向的瞬时和实际生长速率分布。(a)θ=0°(实线)和θ=180°(虚线)处瞬时生长速率及其平均值(点划线);(b)实际生长速率(实线)及其近似值(点线)
Fig.9 Distribution of instantaneous and actual growth rate versus radial coordinate. (a) Instantaneous growth rate of θ=0° (solid line), θ=180°(dash line) and their average value (dash-dot line); (b) the actual growth rate (solid line) and its approximation (dotted line)
| Operating condition | Range |
|---|---|
| Growth temperature/K | 1 823~2 023 |
| Gas flow rate/slm | 50~150 |
| Si/H2 ratio/% | 0.05~0.15 |
表2 参数化研究中各参数取值范围
Table 2 Range of operating conditions in parametric analyses
| Operating condition | Range |
|---|---|
| Growth temperature/K | 1 823~2 023 |
| Gas flow rate/slm | 50~150 |
| Si/H2 ratio/% | 0.05~0.15 |
图10 生长温度分别为1 823(圆形)、1 923(三角形)和2 023 K(方形)时,反应区下表面中央(实线)和表面上方11 mm处(虚线)的气流温度(a)、C2H2摩尔分数(b)、SiCl摩尔分数(c)以及Si摩尔分数(d)沿流向变化
Fig.10 For growth temperatures of 1 823 (circle), 1 923 (triangle) and 2 023 K (square), temperature and mole fraction along the flow direction at the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line), including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), and mole fraction of Si (d)
图11 生长温度分别为1 823(圆形)、1 923(三角形)和2 023 K(方形)时,瞬时生长速率沿流向变化(a)和归一化的实际生长速率(实线)及忽略横向分布的近似值(点线)沿衬底径向的分布(b)
Fig.11 For growth temperatures of 1 823 (circle), 1 923 (triangle) and 2 023 K (square), (a) the instantaneous growth rate along the flow direction, (b) the normalized actual growth rate (solid line) and its approximation (dotted line) along the radial direction of the substrate
图12 不同生长温度对衬底平均生长速率(圆形)和生长速率分布非均匀性(三角形)的影响
Fig.12 Influence of growth temperatures on the average growth rate (circle) and the non-uniformity of growth rate distribution (triangle)
图13 进气流量分别为50(圆形)、100(三角形)和150 slm(方形)时,反应区下表面中央温度(实线)和表面上方11 mm处气流温度(a)、C2H2摩尔分数(b)、SiCl摩尔分数(c)以及Si摩尔分数(d)沿流向变化
Fig.13 For inlet flow rates of 50 (circle), 100 (triangle) and 150 slm (square), temperature and mole fraction along the flow direction at the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line) , including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), and mole fraction of Si (d)
图14 进气流量分别为50(圆形)、100(三角形)和150 slm(方形)时,瞬时生长速率沿流向变化(a)和归一化的实际生长速率(实线)及忽略横向分布的近似值(点线)沿衬底径向的分布(b)
Fig.14 For inlet flow rates of 50 (circle), 100 (triangle) and 150 slm (square), the instantaneous growth rate along the flow direction (a),the normalized actual growth rate (solid line) and its approximation (dotted line) along the radial direction of the substrate (b)
图15 不同进气流量对衬底平均生长速率(圆形)和非均匀性(三角形)的影响
Fig.15 Influences of gas flow rates on average growth rate (circle) and non-uniformity of growth rate distribution (triangle)
图16 进气Si/H2比分别为0.05%(圆形)、0.15%(三角形)和0.25%(方形)时,反应区下表面中央温度(实线)和表面上方11 mm处的气流温度(a)、C2H2摩尔分数(b)、SiCl摩尔分数(c)以及Si摩尔分数(d)沿流向变化
Fig.16 For inlet Si/H2 ratio of 0.05% (circle), 0.15% (triangle) and 0.25% (square), temperature and mole fraction along the flow direction at the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line), including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), and mole fraction of Si (d)
图17 进气Si/H2比分别为0.05%(圆形)、0.15%(三角形)和0.25%(方形)时瞬时生长速率沿流向变化(a)和归一化的实际生长速率(实线)及忽略横向分布的近似值(点线)沿衬底径向的分布(b)
Fig.17 For inlet Si/H2 ratio of 0.05% (circle), 0.15% (triangle) and 0.25% (square), the instantaneous growth rate along the flow direction (a), the normalized actual growth rate (solid line) and its approximation (dotted line) along the radial direction of the substrate (b)
图18 不同Si/H2比对衬底平均生长速率(圆形)和非均匀性(三角形)的影响
Fig.18 Influence of Si/H2 ratio on the average growth rate (circle) and the non-uniformity of growth rate distribution (triangle)
| [1] | TANG Z R, GU L, MA H P, et al. Influence of temperature and flow ratio on the morphology and uniformity of 4H-SiC epitaxial layers growth on 150 mm 4° off-axis substrates[J]. Crystals, 2023, 13(1): 62. |
| [2] |
GUO N, PEI Y C, YUAN W L, et al. Effect of TCS gas flow and pre-etching on homopitaxial growth of 4H-SiC[J]. RSC Advances, 2024, 14(23): 16574-16583.
DOI PMID |
| [3] | TANG Z R, GU L, JIN L, et al. Insights into the effect of susceptor rotational speed in CVD reactor on the quality of 4H-SiC epitaxial layer on homogeneous substrates[J]. Materials Today Communications, 2024, 38: 108037. |
| [4] | GONG X L, XIE T L, HU F, et al. High-quality 4H-SiC homogeneous epitaxy via homemade horizontal hot-wall reactor[J]. Coatings, 2024, 14(7): 911. |
| [5] | CRIPPA D, AZADMAND M, MAUCERI M, et al. Opening through 200 mm silicon carbide epitaxy[J]. Materials Science Forum, 2022, 1062: 146-151. |
| [6] | GONG X L, LI P, XIE T L, et al. High uniform N-type doping of 4H-SiC homoepitaxy based on a horizontal hot-wall reactor[J]. Journal of Crystal Growth, 2024, 648: 127877. |
| [7] | TANG Z R, ZHAO S B, LI J, et al. Optimizing the chemical vapor deposition process of 4H-SiC epitaxial layer growth with machine-learning-assisted multiphysics simulations[J]. Case Studies in Thermal Engineering, 2024, 59: 104507. |
| [8] | TIAN J, TANG Z R, TANG H Y, et al. Multi-objective optimization of 4H-SiC homoepitaxy chemical vapor deposition process fusing support vector machine with multiphysics simulations[J]. Materials Today Communications, 2025, 43: 111721. |
| [9] | YUAN W L, PEI Y C, GUO N, et al. The optimizing effect of nitrogen flow ratio on the homoepitaxial growth of 4H-SiC layers[J]. Crystals, 2023, 13(6): 935. |
| [10] | HÜTTINGER K J. CVD in hot wall reactors: the interaction between homogeneous gas-phase and heterogeneous surface reactions[J]. Chemical Vapor Deposition, 1998, 4(4): 151-158. |
| [11] | HOWELL J R, MENGUC M P, SIEGEL R. Thermal radiation heat transfer[M]. 6th ed. Boca Raton: CRC Press, 2015. |
| [12] | TAYLOR R, KRISHNA R. Multicomponent mass transfer[M]. New York, USA: Wiley, 1993. |
| [13] | HIRSCHFELDER J O, CURTISS C F, BIRD R B. Molecular theory of gases and liquids [M]. Corrected Printing with Notes Added Ed. Hoboken, New Jersey, USA: Wiley, 1964. |
| [14] | KUO K K, ACHARYA R. Applications of turbulent and multiphase combustion[M]. Hoboken, New Jersey, USA: Wiley, 2012. |
| [15] | DANIELSSON Ö, KARLSSON M, SUKKAEW P, et al. A systematic method for predictive in silico chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2020, 124(14): 7725-7736. |
| [16] | ENTEGRIS I. Graphite properties and characteristics for industrial applications[R]. Decatur, Texas, USA: Entegris, Inc., 2020. |
| [17] | MA R. Modeling and design of PVT growth of silicon carbide crystals[D]. New York, USA: State University of New York at Stony Brook, 2003. |
| [18] | HAHN T A, KIRBY R K, WOLFE H C, et al. Thermal expansion of fused silica from 80 to 1 000 K-standard reference material 739[C]// Proceedings of the 1971 Thermal Expansion Symposium, Corning, New York (USA). AIP, 1972: 13-24. |
| [19] | SCHNEIDER S J. Engineered materials handbook volume 4: ceramics and glasses[M]. 1 ed. Metals Park, Ohio: ASM International, 1991. |
| [20] | LEE D W, KINGERY W D. Radiation energy transfer and thermal conductivity of ceramic oxides[J]. Journal of the American Ceramic Society, 1960, 43(11): 594-607. |
| [21] | VAN-VLACK L H. Physical ceramics: for engineers[M]. Reading, MA, USA: Addison-Wesley, 1964. |
| [22] | PEDERSEN H, OJAMäE L, DANIELSSON Ö. Perspective—current understanding of the halogenated deposition chemistry for chemical vapor deposition of SiC[J]. ECS Journal of Solid State Science and Technology, 2020, 9(10): 104006. |
| [23] |
PEDERSEN H, LEONE S, KORDINA O, et al. Chloride-based CVD growth of silicon carbide for electronic applications[J]. Chemical Reviews, 2012, 112(4): 2434-53.
DOI PMID |
| [1] | 胡愈硕, 杨国健, 曹光宇, 刘赐恩, 张星, 龙浩, 徐翔宇, 张洪良. 高迁移率的硼掺杂单晶金刚石微波等离子体化学气相沉积生长及电学性质研究[J]. 人工晶体学报, 2025, 54(9): 1566-1573. |
| [2] | 单衍苏, 李兴牧, 王霞, 吴德华, 曹丙强. 全无机卤化物钙钛矿薄膜外延生长研究进展[J]. 人工晶体学报, 2025, 54(7): 1208-1220. |
| [3] | 赵昊, 余博文, 李琪, 李光清, 刘医源, 林娜, 李阳, 穆文祥, 贾志泰. Mist-CVD法生长LiGa5O8单晶薄膜及其导电机理研究[J]. 人工晶体学报, 2025, 54(6): 997-1004. |
| [4] | 李亚洲, 马占红, 姚威振, 杨少延, 刘祥林, 李成明, 王占国. MOCVD载气流量对GaN外延生长的影响[J]. 人工晶体学报, 2025, 54(6): 979-985. |
| [5] | 李翔, 陈根, 沈洁, 祝铭辉. 衬底类型对生长多晶金刚石膜应力和结晶度影响研究[J]. 人工晶体学报, 2025, 54(6): 986-996. |
| [6] | 杜青波, 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强. 宽禁带半导体碳化硅基核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(5): 737-756. |
| [7] | 陈丹莹, 闫龙, 罗稼昊, 郑振宇, 姜勇, 张凯, 周宁, 廖宸梓, 郭世平. 垂直热壁CVD反应器中C/Si比对SiC高速同质外延生长的影响研究[J]. 人工晶体学报, 2025, 54(4): 569-580. |
| [8] | 韩宇, 焦腾, 于含, 赛青林, 陈端阳, 李震, 李轶涵, 张钊, 董鑫. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444. |
| [9] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
| [10] | 胡继超, 赵启阳, 杨志昊, 杨莺, 彭博, 丁雄杰, 刘薇, 张红. 镓源温度对LPCVD氧化镓外延温度场影响的仿真研究[J]. 人工晶体学报, 2025, 54(3): 452-461. |
| [11] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
| [12] | 姚苏昊, 张茂林, 季学强, 杨莉莉, 李山, 郭宇锋, 唐为华. 基于mist CVD的高纯相α-Ga2O3生长与光电响应特性研究[J]. 人工晶体学报, 2025, 54(2): 233-243. |
| [13] | 李雄杰, 宁平凡, 陈世澳, 乔思博, 程红娟, 王英民, 牛萍娟. 不同晶面蓝宝石衬底上α-Ga2O3雾化学气相沉积法生长研究[J]. 人工晶体学报, 2025, 54(2): 255-262. |
| [14] | 高嘉庆, 屈小勇, 吴翔, 郭永刚, 王永冈, 汪梁, 谭新, 杨鑫泽. p型TOPCon结构的隧穿氧化和钝化工艺研究[J]. 人工晶体学报, 2025, 54(1): 133-138. |
| [15] | 吴蕊, 胡洋, 唐荣芬, 阳倩, 王序, 吴怡逸, 聂登攀, 王环江. MOCVD生长ZnO薄膜的气相寄生反应路径研究[J]. 人工晶体学报, 2024, 53(9): 1608-1619. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS