
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1160-1174.DOI: 10.16553/j.cnki.issn1000-985x.2025.0088
收稿日期:2025-04-22
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
牛广达,博士,教授。E-mail:guangda_niu@hust.edu.cn
作者简介:金童(1997—),男,湖北省人,博士研究生。E-mail:898335527@qq.com基金资助:
JIN Tong1,2(
), NIU Guangda1,2,3(
)
Received:2025-04-22
Online:2025-07-20
Published:2025-07-30
摘要: 金属卤化物钙钛矿材料因其优异的光电性能和可调控的晶体结构,在太阳能电池、发光二极管和光电探测器等领域展现出巨大的应用潜力。结构畸变作为调控钙钛矿材料性能的重要手段,能够显著影响其电子结构、载流子动力学和光电特性,为设计新型功能材料提供了重要途径。近年来,钙钛矿单晶的结构畸变调控研究取得了显著进展。通过改变基底特性、引入有机阳离子、调控卤素组成或施加外部应力,研究人员能够有效调节钙钛矿单晶的晶格对称性和电子能带结构,从而优化其光电性能。特别是,结构畸变对载流子动力学、激子行为和缺陷态密度的调控作用,为开发高性能钙钛矿器件提供了新的途径。本文首先阐述了钙钛矿材料结构畸变的表征方法与机理基础,随后详细分析了实验条件下诱发钙钛矿结构畸变的主要影响因素,进而深入探讨了结构畸变与材料光电性能的构效关系,为钙钛矿光电材料的结构畸变与性能调控提供了参考。
中图分类号:
金童, 牛广达. 钙钛矿结构畸变与性能调控研究进展[J]. 人工晶体学报, 2025, 54(7): 1160-1174.
JIN Tong, NIU Guangda. Research Progress on Perovskite Structural Distortion and Performance Regulation[J]. Journal of Synthetic Crystals, 2025, 54(7): 1160-1174.
图1 (a)FAPbI3钙钛矿中X射线穿透深度与入射角的关系图[19];(b)随深度应变分布测量的衍射几何形状。仪器参考(Z)框架与衍射矢量之间的关系(α和β是X射线的入射和出射角,定义为入射X射线与样品表面之间的角度);(c)残余应变分布测量示意图。通过固定测试晶面并调整仪器倾斜角度ψ,可以获得相应的XRD图谱和晶格结构畸变信息,其中 N0 是样品法线方向, Nk 是衍射矢量[11]
Fig.1 (a) The plot of estimated X-ray penetration depth versus incident angles in FAPbI3[19]; (b) diffraction geometries of the depth-dependent strain distribution measurement. The relation between instrument reference (Z) frame and diffraction vector (α and β are the incident and exit angles of X-rays, defined as the angle between the incident/diffracted X-rays and the sample surface);(c) schematic illustration of the residual strain distribution measurement. The corresponding XRD patterns and lattice structure strain information can be obtained by fixing the test crystal plane and adjusting the instrument tilt angle ψ, where N0 is the sample normal direction and Nk is the diffraction vector[11]
图2 (a)表面应变状态示意图;(b)拉伸应变膜在50 nm深度不同倾斜角度下的GIXRD图谱;(c)拉伸应变膜在50、200、500 nm深度的残余应变分布图;(d)无应变膜在50 nm深度不同倾角下的GIXRD图谱;(e)无应变膜在50、200、500 nm深度的残余应变分布图;(f)压缩应变膜在50 nm深度不同倾角下的GIXRD图谱;(g)压应变膜在50、200、500 nm深度的残余应变分布图[11]
Fig.2 (a) Schematic diagram of surface strain state; (b) GIXRD patterns at different tilt angles at the depth of 50 nm for the tensile-strained film; (c) residual strain distribution in the depth of 50, 200, 500 nm for the tensile-strained film; (d) GIXRD patterns at different tilt angles at the depth of 50 nm for the strain-free film; (e) residual strain distribution in the depth of 50, 200, 500 nm for the strain-free film; (f) GIXRD patterns at different tilt angles at the depth of 50 nm for the compressive strained film; (g) residual strain distribution in the depth of 50, 200, 500 nm for the compressive strained film[11]
图3 应力示意图。(a) MAPbI3退火膜(AF)、刮粉(SP)、单晶粉(SCP)、非退火膜(NAF)的面外XRD图谱;(b)AF的面内、面外XRD图谱和SCP的面外XRD图谱;(c)面外结构示意图;(d)面内结构示意图[10]
Fig.3 Schematic diagram of strain. (a) Out-of-plane XRD patterns of the MAPbI3 annealed film (AF), scraped powder (SP), single-crystal powder (SCP), and non-annealed film (NAF); (b) in-plane and out-of-plane XRD patterns of AF and out-of-plane XRD pattern of SCP; (c) schematic diagram of the out-of-plane structure; (d) schematic diagram of the in-plane structure[10]
图4 (a)生长过程中CsPbBr3晶体无裂纹;(b)带裂纹的CsPbBr3单晶;(c)CsPbBr3形成孪晶界;(d)Cs/(Cs+FA)比值从0%到100%变化的不同前驱体溶液中生长的几种FA x Cs1-x PbBr3单晶的照片[20]
Fig.4 (a) The crystal under growing is free of cracks; (b) solution-grown CsPbBr3 single crystals with cracks, (c) paralleled domains indicate the formation of twin boundaries in CsPbBr3; (d) a photograph of several as-grown FA x Cs1-x PbBr3 single crystals from different precursor solutions with Cs/(Cs?+?FA) ratios varying from 0% to 100%[20]
图5 应变形成过程示意图及XRD图谱。(a)无衬底时,在100 ℃下形成的钙钛矿在冷却过程中垂直和横向收缩;(b)随着衬底的粘附,退火后的钙钛矿膜仅垂直收缩;不同温度下刮粉末(c)和退火膜(d)的原位面外XRD[10]
Fig.5 Schematic diagram and XRD patterns of the strain formation process. (a) Without substrate, the perovskite forming at 100 °C contracts vertically and laterally during cooling; (b) with the substrate adhesion, the annealed perovskite film only contracts vertically, in situ out-of-plane XRD of scraped powder (c) and annealed film (d) at different temperatures[10]
图6 外延α-FAPbI3薄膜及其结构表征。(a)生长α-FAPbI3外延薄膜的光学图像;(b)厚度均匀控制的外延薄膜的横断面SEM照片;(c)不同衬底上外延样品(001)峰的高分辨率XRD ω-2θ扫描显示,随着晶格失配的增加,四边形增加;(d)α-FAPbI3的(104)不对称反射的互反空间映射,用于不同晶格与衬底的不匹配[9]
Fig.6 Epitaxial α-FAPbI3 thin films and structural characterizations. (a) Optical images of the as-grown epitaxial α-FAPbI3 thin films; (b) a cross-sectional scanning electron microscope (SEM) image of the epitaxial thin film with controlled uniform thickness; (c) high-resolution XRD ω-2θ scan of the (001) peaks of the epitaxial samples on different substrates showing the increasing tetragonality with increasing lattice mismatch; (d) reciprocal space mapping with (104) asymmetric reflection of the α-FAPbI3, for different lattice mismatches with the substrate[9]
图7 (a)(FAPbI3)0.85(MAPbBr3)0.15器件的TEM横截面图像;(b)共聚焦荧光显微镜的PL深度剖面图,插图为拉伸应变下(FAPbI3)0.85(MAPbBr3)0.15钙钛矿膜的TOF-SIMS深度剖面图[11]
Fig.7 (a) Cross-sectional TEM image of device; (b) PL depth profile of confocal fluorescence microscope, the inset represents TOF-SIMS depth profiles of the (FAPbI3)0.85(MAPbBr3)0.15 perovskite film with tensile strain[11]
图8 (a)PEA2PbBr4单晶在100、300、500 nm深度的残余应变分布(实测(点)和高斯拟合(线)衍射应变数据随sin2φ的函数);(b)点阵常数与穿透深度的关系图;(c)含(PEA+-I-)缺陷和不含(PEA+-I-)缺陷PEA2PbI4分层分解状态密度计算结果及与层垂直排列的模型结构示意图;(d)二维钙钛矿PEA2PbI4表面和内部的N 1s 的XPS[28]
Fig.8 (a) Residual strain distribution in the depth of 100, 300, 500 nm for PEA2PbBr4 single crystal (measured (points) and Gauss fitted (line) diffraction strain data as a function of sin2φ); (b) the plot of lattice constant versus penetration depth; (c) the results of the layer-decomposed density of state calculation for PEA2PbI4 with and without (PEA+-I-) defect and schematics of the model structures vertically aligned with the layers; (d) N 1s XPS of the surface and interior of two-dimensional perovskites PEA2PbI4[28]
图9 应变致电子结构分析。(a)基于第一性原理DFT的方法计算双轴拉伸、零应变和压缩应变下的能带结构,以真空能级为参考,进行了能带结构对准;(b)钙钛矿薄膜在拉伸应变逐渐增加的情况下能带边缘能量的演变(左图),以及太阳能电池中拉伸应变/无应变薄膜与空穴输运层之间的能带排列示意图;(c)拉伸应变、无应变和压缩应变条件下的紫外(UV)-可见(Vis)吸收光谱和PL光谱[11]
Fig.9 Strain-induced electronic structure analysis. (a) Calculated band structures under biaxial tensile, zero, and compressive strains from first-principle DFT-based approaches, the band structure alignment is made by using the vacuum energy level as reference; (b) the evolution of band-edge energies under gradually increasing tensile strains in perovskite films (left panel), and the schematic of the band alignment between tensile strain/strain-free film and hole transport layer in solar cell; (c) UV-Vis absorption spectra and PL spectra under tensile strain, strainfree, and compressive strain conditions[11]
图10 二维钙钛矿表面和内部激子之间的能量传递过程。(a)在500~590 nm发射的时间分辨PL动力学;(b)二维钙钛矿不同延迟时间的归一化PL光谱;(c)分别在520和559 nm波长下监测的归一化PL衰减曲线;(d)二维钙钛矿中自波长移动的能级和激子漏斗过程示意图[28]
Fig.10 The energy transfer process between the surface and inside excitons of two-dimensional perovskite. (a) Time-resolved PL kinetics collected in the emission channels of 500~590 nm; (b) normalized PL spectra with the different time delays of 2D-perovskites; (c) normalized PL decay curves monitored at 520 and 559 nm wavelength, respectively; (d) schematic illustration of the energy level and exciton funneling process of the self-wavelength shifting in two-dimensional perovskites[28]
图11 (a)载流子在不同应变下的有效质量,以及3种应变水平(3%、0%和-3%)下的电子能带结构;(b)霍尔效应测量的空穴迁移率表明,α-FAPbI3在应变为-1.2%时空穴迁移率最高;(c)不同应变下外延α-FAPbI3的瞬态光电流曲线;(d)计算出的载流子迁移率随应变大小的函数图[9]
Fig.11 (a) Effective masses of the carriers at different strains, and electronic bandstructures under three strain levels (3%, 0% and -3%); (b) hole mobilities by Hall effect measurements showing that α-FAPbI3 with strain of -1.2% has the highest hole mobility; (c) transient photocurrent curves of the epitaxial α-FAPbI3 under different strains; (d) plots of calculated carrier mobilities as a function of the strain magnitudes[9]
| [1] | CHUNG I, LEE B, HE J Q, et al. All-solid-state dye-sensitized solar cells with high efficiency[J]. Nature, 2012, 485(7399): 486-489. |
| [2] | KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750. |
| [3] | JENA A K, KULKARNI A, MIYASAKA T. Halide perovskite photovoltaics: background, status, and future prospects[J]. Chemical Reviews, 2019, 119(5): 3036-3103. |
| [4] | FENG J, QIAN X F, HUANG C W, et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nature Photonics, 2012, 6(12): 866-872. |
| [5] | KURDI M, BERTIN H, MARTINCIC E, et al. Control of direct band gap emission of bulk germanium by mechanical tensile strain[J]. Applied Physics Letters, 2010, 96(4): 041909. |
| [6] | AHN G H, AMANI M, RASOOL H, et al. Strain-engineered growth of two-dimensional materials[J]. Nature Communications, 2017, 8(1): 608. |
| [7] | HUBBARD S M, CRESS C D, BAILEY C G, et al. Effect of strain compensation on quantum dot enhanced GaAs solar cells[J]. Applied Physics Letters, 2008, 92(12): 123512. |
| [8] | OSHIMA R, TAKATA A, OKADA Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells[J]. Applied Physics Letters, 2008, 93(8): 083111. |
| [9] | CHEN Y M, LEI Y S, LI Y H, et al. Strain engineering and epitaxial stabilization of halide perovskites[J]. Nature, 2020, 577(7789): 209-215. |
| [10] | ZHAO J J, DENG Y H, WEI H T, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells[J]. Science Advances, 2017, 3(11): 5616. |
| [11] | ZHU C, NIU X X, FU Y H, et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics[J]. Nature Communications, 2019, 10(1): 815. |
| [12] | LEBLEBICI S Y, LEPPERT L, LI Y B, et al. Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite[J]. Nature Energy, 2016, 1: 16093. |
| [13] | BUSH K A, ROLSTON N, GOLD-PARKER A, et al. Controlling thin-film stress and wrinkling during perovskite film formation[J]. ACS Energy Letters, 2018, 3(6): 1225-1232. |
| [14] | VAILIONIS A, BOSCHKER H, SIEMONS W, et al. Misfit strain accommodation in epitaxial ABO3 perovskites: lattice rotations and lattice modulations[J]. Physical Review B, 2011, 83(6): 064101. |
| [15] | CHEN Z, PRUD’HOMME N, WANG B, et al. Residual stress gradient analysis with GIXRD on ZrO2 thin films deposited by MOCVD[J]. Surface and Coatings Technology, 2011, 206(2/3): 405-410. |
| [16] | PENG J, JI V, SEILER W, et al. Residual stress gradient analysis by the GIXRD method on CVD tantalum thin films[J]. Surface and Coatings Technology, 2006, 200(8): 2738-2743. |
| [17] | BENEDIKTOVITCH A, ULYANENKOVA T, KECKES J, et al. Stress gradient analysis by noncomplanar X-ray diffraction and corresponding refraction correction[J]. Advanced Materials Research, 2014, 996: 162-168. |
| [18] | STEFENELLI M, TODT J, RIEDL A, et al. X-ray analysis of residual stress gradients in TiN coatings by a Laplace space approach and cross-sectional nanodiffraction: a critical comparison[J]. Journal of Applied Crystallography, 2013, 46(5): 1378-1385. |
| [19] | QIN M C, XUE H B, ZHANG H K, et al. Precise control of perovskite crystallization kinetics via sequential A-site doping[J]. Advanced Materials, 2020, 32(42): 2004630. |
| [20] | ZHAO L, ZHOU Y, SHI Z F, et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy[J]. Nature Photonics, 2023, 17(4): 315-323. |
| [21] | LIU G, KONG L P, GONG J, et al. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability[J]. Advanced Functional Materials, 2017, 27(3): 1604208. |
| [22] | CHEN B, LI T, DONG Q F, et al. Large electrostrictive response in lead halide perovskites[J]. Nature Materials, 2018, 17(11): 1020-1026. |
| [23] | WANG Y P, GAO L, YANG Y B, et al. Nontrivial strength of van der Waals epitaxial interaction in soft perovskites[J]. Physical Review Materials, 2018, 2(7): 076002. |
| [24] | YU J X, LIU G X, CHEN C M, et al. Perovskite CsPbBr3 crystals: growth and applications[J]. Journal of Materials Chemistry C, 2020, 8(19): 6326-6341. |
| [25] | FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368. |
| [26] | HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9(1): 1609. |
| [27] | JACOBSSON T J, SCHWAN L J, OTTOSSON M, et al. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction[J]. Inorganic Chemistry, 2015, 54(22): 10678-10685. |
| [28] | JIN T, LIU Z, LUO J J, et al. Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection[J]. Nature Communications, 2023, 14(1): 2808. |
| [29] | MELONI S, PALERMO G, ASHARI-ASTANI N, et al. Valence and conduction band tuning in halide perovskites for solar cell applications[J]. Journal of Materials Chemistry A, 2016, 4(41): 15997-16002. |
| [30] | YIN W J, YANG J H, KANG J, et al. Halide perovskite materials for solar cells: a theoretical review[J]. Journal of Materials Chemistry A, 2015, 3(17): 8926-8942. |
| [31] | PANUGANTI S, BESTEIRO L V, VASILEIADOU E S, et al. Distance dependence of Förster resonance energy transfer rates in 2D perovskite quantum wells via control of organic spacer length[J]. Journal of the American Chemical Society, 2021, 143(11): 4244-4252. |
| [32] | GIORGI G, FUJISAWA J I, SEGAWA H, et al. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis[J]. The Journal of Physical Chemistry Letters, 2013, 4(24): 4213-4216. |
| [1] | 陈思贤, 徐乐, 唐远之, 孙海滨, 郭学, 冯玉润, 胡强强. I-掺杂Cs3Bi2Br9晶体的生长及其光学性能调控[J]. 人工晶体学报, 2025, 54(7): 1282-1288. |
| [2] | 马文君, 张国栋, 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂. 卤化物钙钛矿半导体单晶及核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(7): 1091-1099. |
| [3] | 杨智, 顾林园, 王大伟, 徐旭辉, 宋继中. CsPbBr3钙钛矿量子点闪烁体的X射线辐照稳定性[J]. 人工晶体学报, 2025, 54(7): 1265-1271. |
| [4] | 张淑艺, 刘庚灵, 王浩, 鲁跃, 姜显园, 李文焯, 刘聪, 吕英波, 武中臣, 刘董, 陈耀. 锡基钙钛矿晶体与器件的研究进展[J]. 人工晶体学报, 2025, 54(7): 1189-1207. |
| [5] | 贾宇桢, 李政隆, 颜欣龙, 王瑞辰, 彭晨, 段韦恒, 杨伟虎, 何伟民, 宋柏君, 程瑶, 范潇宇, 杨帆. 0维钙钛矿Cs3CdBr5的晶体生长与闪烁性能研究[J]. 人工晶体学报, 2025, 54(7): 1221-1228. |
| [6] | 杨帆, 张思媛, 董武佩, 王希正, 周铭, 居佃兴. 英寸级(C24H20P)2MnBr4单晶薄膜生长及高分辨率X射线成像[J]. 人工晶体学报, 2025, 54(7): 1289-1296. |
| [7] | 单衍苏, 李兴牧, 王霞, 吴德华, 曹丙强. 全无机卤化物钙钛矿薄膜外延生长研究进展[J]. 人工晶体学报, 2025, 54(7): 1208-1220. |
| [8] | 郑璐瑛, 王芳, 许谢铭, 王帅华, 吴少凡. 基于RP型层状钙钛矿CHA2PbBr4单晶的高效X射线探测[J]. 人工晶体学报, 2025, 54(7): 1272-1281. |
| [9] | 程嘉甜, 范鑫雨, 杨周. 快速球磨法制备钙钛矿颗粒的光电性质和X射线探测性能研究[J]. 人工晶体学报, 2025, 54(7): 1297-1303. |
| [10] | 萧岱桢, 高荣, 陈怡, 米启兮. 全无机锡钙钛矿CsSnBr3晶体的生长和电学、光学性能研究[J]. 人工晶体学报, 2025, 54(7): 1245-1255. |
| [11] | 偰航, 靳志文. 薄膜制备方法及其结晶行为对卤化物钙钛矿X射线探测器成像性能的影响研究综述[J]. 人工晶体学报, 2025, 54(7): 1100-1120. |
| [12] | 张爱平, 魏亚洲, 周昌垚, 袁瑞涵, 吴聪聪, 郑霄家. BA2MA3Pb4I13相纯度调控及其对X射线探测的影响[J]. 人工晶体学报, 2025, 54(7): 1256-1264. |
| [13] | 惠娟, 杨旸. 量子剪裁型镱离子掺杂钙钛矿纳米晶的合成及其在X射线多能谱成像中的新应用[J]. 人工晶体学报, 2025, 54(7): 1121-1131. |
| [14] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [15] | 于牧冰, 高岗, 赵勇彪, 朱嘉琦. 蓝光准二维钙钛矿结晶动力学调控及其电致发光器件研究[J]. 人工晶体学报, 2025, 54(7): 1132-1145. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS