欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2173-2180.DOI: 10.16553/j.cnki.issn1000-985x.2025.0163

• 研究论文 • 上一篇    下一篇

SnSe单层对N2O和HCN吸附行为的密度泛函理论研究

吴家隐1(), 卫静婷1(), 黎斌1, 李宗宝2, 莫秋燕3   

  1. 1.广东开放大学(广东理工职业学院)工程技术学院,广州 510091
    2.武汉纺织大学材料科学与工程学院,武汉 430220
    3.凯里学院微纳与智能制造教育部工程研究中心,凯里 556011
  • 收稿日期:2025-07-27 出版日期:2025-12-20 发布日期:2026-01-04
  • 通信作者: 卫静婷,博士,副教授。E-mail:jtwei@gdrtvu.edu.cn
  • 作者简介:吴家隐(1984—),男,广东省人,博士,副研究员。E-mail:wujiayin@m.scnu.edu.cn
  • 基金资助:
    凯里学院微纳与智能制造教育部工程研究中心重点研究方向项目(2024WZG09);黔东南州科技支撑计划项目(〔2024〕0020);国家自然科学基金(22269019);广东省成人教育协会科研课题重点课题(Ycx20141002);广东开放大学(广东理工职业学院)教学建设与改革项目(2025CJRH002)

Density Functional Theory Investigation of N2O and HCN Adsorption Behavior on SnSe Monolayers

WU Jiayin1(), WEI Jingting1(), LI Bin1, LI Zongbao2, MO Qiuyan3   

  1. 1. Department of Engineering Technology,Guangdong Open University & Guangdong Polytechnic Institute,Guangzhou 510091,China
    2. School of Materials Science and Engineering,Wuhan Textile University,Wuhan 430220,China
    3. Engineering Research Center of Micro-Nano and Intelligent Manufacturing,Ministry of Education,Kaili University,Kaili 556011,China
  • Received:2025-07-27 Online:2025-12-20 Published:2026-01-04

摘要: 本文基于密度泛函理论,对β-SnSe单层表面吸附N2O和HCN气体分子的几何构型、电子结构及传感性能进行了全面分析。研究结果表明,SnSe对这两种气体均呈现出物理吸附,其中对HCN的相互作用更强。吸附能分析显示吸附过程具有放热特性,有利于在室温条件下实现气体分子的自发捕获。HCN的吸附显著提升了费米能级附近的态密度,进一步提升了SnSe的电导率。SnSe单层还表现出优异的可逆性,在常温下对两种气体均具备快速恢复能力。此外,该材料在1.2 V偏压下对HCN的响应灵敏度可达61.7%,远高于N2O,这一结果也优于其他二维材料对HCN的灵敏度,进一步凸显了SnSe在HCN探测中的优异性能。本研究不仅提示了SnSe单层材料对HCN的传感机制,也为开发低成本、高敏感度且可重复使用的现场实时监测的气体传感器提供理论。

关键词: 二维材料; 气体传感; 第一性原理; 密度泛函理论; 非平衡格林函数; β-SnSe

Abstract: The adsorption behavior, electronic characteristics, and gas sensing performance of β-SnSe monolayers toward N2O and HCN molecules were systematically investigated using density functional theory. Optimized adsorption configurations reveal that both gases are physisorbed onto the SnSe surface, with HCN exhibiting stronger interactions. Adsorption energy calculations demonstrate the exothermic nature of these processes, indicating their thermodynamic feasibility for spontaneous gas capture under ambient conditions. The adsorption of HCN significantly increase the density of states near the Fermi level, thereby enhancing the electrical conductivity of the SnSe monolayer. Furthermore, rapid recovery behaviors for both gas species are observed at room temperature, confirming the excellent reversibility of the sensing system. Under a bias voltage of 1.2 V, the response sensitivity to HCN reaches 61.7%, markedly surpassing that of N2O and outperforming existing two-dimensional sensing materials. Further highlighting the excellent performance of SnSe in HCN detection. These results not only reveal the sensing mechanism of SnSe toward HCN, but also provide theoretical support for the design of low-cost, highly sensitive, and reusable gas sensors suitable for real-time environmental monitoring applications.

Key words: two-dimensional material; gas sensing; first-principles; density functional theory; non-equilibrium Green’s function; β-SnSe

中图分类号: