
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2164-2172.DOI: 10.16553/j.cnki.issn1000-985x.2025.0142
收稿日期:2025-07-07
出版日期:2025-12-20
发布日期:2026-01-04
通信作者:
黄文奇,博士,副教授。E-mail:hwq5667@bistu.edu.cn
作者简介:贾梦江(1997—),男,河南省人,硕士研究生。E-mail:13920252756@163.com
基金资助:
JIA Mengjiang1(
), HUANG Wenqi1(
), WANG Hai1, ZHENG Jun2,3
Received:2025-07-07
Online:2025-12-20
Published:2026-01-04
摘要: 锗铅合金是当前最有前景的硅基高效发光材料之一,但在生长过程中铅容易发生表面偏析,导致很难获得高质量且高铅组分的合金。本文从铅表面偏析的微观机制入手,采用基于密度泛函理论(DFT)的第一性原理计算方法,研究不同铅组分锗铅合金中替位铅和非替位点缺陷(VPbV)的性质随铅组分和掺杂条件的变化规律。研究表明,随着铅组分增加,替位铅的形成能升高,VPbV的形成能降低,这表明铅更容易发生表面偏析。当锗铅掺杂氢元素时,替位铅的形成能相对于未掺杂时降低,VPbV形成能相对于未掺杂时升高,这表明掺氢有助于抑制铅的表面偏析。并且,氢浓度越大,抑制铅表面偏析的效果越好。这些理论结果很好地解释了铅表面偏析的实验规律。本研究不仅可为锗铅合金的材料生长提供理论指导,相关的研究思想方法还可以扩展到其他IV族合金的研究中。
中图分类号:
贾梦江, 黄文奇, 王海, 郑军. 锗铅合金中非替位点缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(12): 2164-2172.
JIA Mengjiang, HUANG Wenqi, WANG Hai, ZHENG Jun. First-Principles Study of Non-Substitutional Point Defects in Germanium-Lead Alloys[J]. Journal of Synthetic Crystals, 2025, 54(12): 2164-2172.
图1 SQS生成的Ge0.984Pb0.016超胞模型。(a)Ge0.984Pb0.016构型示意图(灰色为空位;红色为Pb);(b)掺H Ge0.984Pb0.016构型示意图(灰色为空位;红色为Pb;粉色为H)
Fig.1 SQS-generated supercell model of Ge0.984Pb0.016. (a) Ge0.984Pb0.016 configuration schematic (gray: vacancy; red: Pb); (b) H-doped Ge0.984Pb0.016 configuration schematic (gray: vacancy; red: Pb; pink: H)
图2 Ge0.984Pb0.016 VPbV形成能。(a)Ge0.984Pb0.016三种价态下VPbV的形成能对比;(b)交点放大细节
Fig.2 Formation energy of VPbV in Ge0.984Pb0.016. (a) Comparison of VPbV formation energies across three charge states in Ge0.984Pb0.016; (b) enlarged view of the intersection region
图3 不同SQS模型Ge0.984Pb0.016下VPbV(a)与替位Pb(b)的形成能
Fig.3 Formation energies of VPbV (a) and substitutional Pb (b) in different SQS-generated models of Ge0.984Pb0.016
图6 Ge0.984Pb0.016(a)和Ge0.969Pb0.031(b)中Ge—Pb键的电子云密度分布,Ge0.984Pb0.016(c)和Ge0.969Pb0.031(d)中VPbV的电子云密度分布
Fig.6 Electron density distributions of Ge—Pb bond in Ge0.984Pb0.016 (a) and Ge0.969Pb0.031 (b), electron density distributions of VPbV in Ge0.984Pb0.016 (c) and Ge0.969Pb0.031 (d)
| [1] | 王子昊, 王 霆, 张建军. 硅基光电异质集成的发展与思考[J]. 中国科学院院刊, 2022, 37(3): 360-367. |
| WANG Z H, WANG T, ZHANG J J. Development and thinking of silicon photonics heterogenous integration[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(3): 360-367 (in Chinese). | |
| [2] | 周治平, 陈卫标, 冯俊波, 等. 硅基光电子及其前沿进展(特邀) [J]. 光学学报, 2024(1): 0602002. |
| ZHOU Z P, CHEN W B, FENG J B, et al. Silicon based optoelectronics and its frontier advances (invited) [J].Acta Optica Sinica, 2024(1): 0602002 (in Chinese). | |
| [3] | 储 涛. 硅基光电子集成器件[J]. 光学与光电技术, 2019, 17(4): 5-9. |
| CHU T. Silicon-based optoelectronic integrated devices[J]. Optics & Optoelectronic Technology, 2019, 17(4): 5-9 (in Chinese). | |
| [4] | 孙生柳, 黄文奇, 张立鑫, 等. 硅基Ⅳ族SiGeSn三元合金晶格结构、电子结构和光学性质的第一性原理[J]. 人工晶体学报, 2021, 50(12): 2232-2239+2254. |
| SUN S L, HUANG W Q, ZHANG L X, et al. First-principles study on lattice structure, electronic structure and optical properties of group-Ⅳ SiGeSn ternary alloy[J]. Journal of Synthetic Crystals, 2021, 50(12): 2232-2239+2254 (in Chinese). | |
| [5] | 朱元昊, 温书育, 何 力, 等. 后摩尔时代硅基片上光源研究进展[J]. 微纳电子与智能制造, 2021, 3(1): 136-149. |
| ZHU Y H, WEN S Y, HE L, et al. Research progress of silicon light sources in the Post-Moore Era[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2021, 3(1): 136-149 (in Chinese). | |
| [6] | 张 璐, 柯少颖, 汪建元, 等. 硅基Ⅳ族材料外延生长及其发光和探测器件研究进展[J]. 中国科学: 物理学 力学 天文学, 2021, 51(3): 45-57. |
| ZHANG L, KE S Y, WANG J Y, et al. Research progress in the epitaxial growth of silicon-based group Ⅳ materials, and their light emitters and photodetectors[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(3): 45-57 (in Chinese). | |
| [7] | POLAK M P, SCHAROCH P, KUDRAWIEC R. The effect of isovalent doping on the electronic band structure of group IV semiconductors[J]. Journal of Physics D: Applied Physics, 2021, 54(8): 085102. |
| [8] | HUANG W Q, CHENG B W, XUE C L, et al. The band structure and optical gain of a new IV-group alloy GePb: a first-principles calculation[J]. Journal of Alloys and Compounds, 2017, 701: 816-821. |
| [9] | LIU X Q, ZHENG J, HUANG Q X, et al. Investigation of temperature and H2 on GePb/Ge multiple quantum well growth[J]. Journal of Physics D: Applied Physics, 2024, 57(24): 245108. |
| [10] | LIU X Q, ZHENG J, ZHOU L, et al. Growth of single crystalline GePb film on Ge substrate by magnetron sputtering epitaxy[J]. Journal of Alloys and Compounds, 2019, 785: 228-231. |
| [11] | SCHLIPF J, FRIEIRO J L, FISCHER I A, et al. Growth of patterned GeSn and GePb alloys by pulsed laser induced epitaxy[C]//2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). May 22-26, 2017, Opatija, Croatia. IEEE, 2017: 37-42. |
| [12] | MCCARTHY T T, MCMINN A M, LIU X Y, et al. Molecular beam epitaxy growth and characterization of GePb alloys[J]. Journal of Vacuum Science & Technology B, 2024, 42(3): 032210. |
| [13] | YANG J Y, HU H Y, MIAO Y H. High quality morphology and high Hall mobility of GePb alloys formed by using implantation and annealing process[C]//Sixth Symposium on Novel Optoelectronic Detection Technology and Applications. December 3-5, 2019. Beijing, China. SPIE, 2020: 334. |
| [14] | LIU X Q, ZHENG J, ZHAO Y, et al. Germanium lead alloy on insulator grown by rapid melting growth[J]. Journal of Alloys and Compounds, 2021, 864: 158798. |
| [15] | LIU X Q, ZHENG J, HUANG Q X, et al. Growth and characterization of GePb/Ge multiple quantum wells[J]. Journal of Alloys and Compounds, 2023, 934: 167954. |
| [16] | YU J L, LIN G Y, XIA S L, et al. p-i-n photodetector with active GePb layer grown by sputtering epitaxy[J]. Applied Physics Express, 2024, 17(4): 045501. |
| [17] | LIANG Y F, CHEN S D, JIN X C, et al. Group IV topological quantum alloy and the role of short-range order: the case of Ge-rich Ge1- x Pb x [J]. NPJ Computational Materials, 2024, 10: 82. |
| [18] | VENTURA C I, FUHR J D, BARRIO R A. Nonsubstitutional single-atom defects in the Ge1- x Sn x alloy[J]. Physical Review B, 2009, 79(15): 155202. |
| [19] | LONDOS C A, SGOUROU E N, CHRONEOS A. Defect engineering of the oxygen-vacancy clusters formation in electron irradiated silicon by isovalent doping: an infrared perspective[J]. Journal of Applied Physics, 2012, 112(12): 123517. |
| [20] | HÖHLER H, ATODIRESEI N, SCHROEDER K, et al. Vacancy complexes with oversized impurities in Si and Ge[J]. Physical Review B, 2005, 71(3): 035212. |
| [21] | FUHR J D, VENTURA C I, BARRIO R A. Formation of non-substitutional β-Sn defects in Ge1- x Sn x alloys[J]. Journal of Applied Physics, 2013, 114(19): 193508. |
| [22] | BARRIO R A, QUERALES FLORES J D, FUHR J D, et al. Non-substitutional Sn defects in Ge1- x Sn x alloys for opto- and nanoelectronics[J]. Journal of Superconductivity and Novel Magnetism, 2013, 26(6): 2213-2217. |
| [23] | DECOSTER S, COTTENIER S, WAHL U, et al. Lattice location study of ion implanted Sn and Sn-related defects in Ge[J]. Physical Review B, 2010, 81(15): 155204. |
| [24] | CHRONEOS A, BRACHT H. Diffusion of n-type dopants in germanium[J]. Applied Physics Reviews, 2014, 1(1): 011301. |
| [25] | ZUNGER A, WEI S H, FERREIRA L G, et al. Special quasirandom structures[J]. Physical Review Letters, 1990, 65(3): 353-356. |
| [26] | WEI S, FERREIRA L G, BERNARD J E, et al. Electronic properties of random alloys: special quasirandom structures[J]. Phys Rev B Condens Matter, 1990, 42(15): 9622-9649. |
| [27] | KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186. |
| [28] | BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979. |
| [29] | MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. |
| [30] | MORENO J, SOLER J M. Optimal meshes for integrals in real- and reciprocal-space unit cells[J]. Physical Review B, 1992, 45(24): 13891-13898. |
| [31] | GEE A T, HAYDEN B E, MORMICHE C, et al. The role of steps in the dynamics of hydrogen dissociation on Pt(533)[J]. The Journal of Chemical Physics, 2000, 112: 7660-7668. |
| [32] | CHRISTMANN K. Interaction of hydrogen with solid surfaces[J]. Surface Science Reports, 1988, 9(1/2/3): 1-163. |
| [33] | CHEN Z, YUAN P, CHEN C L, et al. Balancing Pd-H interactions: thiolate-protected palladium nanoclusters for robust and rapid hydrogen gas sensing[J]. Advanced Materials, 2024, 36(51): 2404291. |
| [34] | BIAN Z K, ZHANG Q K, ZHANG H M, et al. Effect of doping with M (M=Al, Pd, Ti, Ge) on the electronic structure and hydrogen diffusion behavior of amorphous silicon[J]. Computational and Theoretical Chemistry, 2024, 1242: 114915. |
| [1] | 冷昊宁, 孙霄霄, 穆柏旭, 宁丽娜. KNbO3高压下相变行为的第一性原理研究[J]. 人工晶体学报, 2025, 54(9): 1584-1592. |
| [2] | 韩懿博, 吉旭, 井群, 朱宣恺, 艾孜再姆·吾布力塔依尔, 赵文豪, 曹鑫佳. YPO4双折射率增益机制和晶格工程调控策略研究[J]. 人工晶体学报, 2025, 54(9): 1547-1557. |
| [3] | 秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453. |
| [4] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [5] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [6] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [7] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [8] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [9] | 黄成, 钱艳楠. 4-氯苯磺酸钠多功能添加剂实现高效碳基CsPbI2Br太阳能电池[J]. 人工晶体学报, 2025, 54(12): 2190-2199. |
| [10] | 吴家隐, 卫静婷, 黎斌, 李宗宝, 莫秋燕. SnSe单层对N2O和HCN吸附行为的密度泛函理论研究[J]. 人工晶体学报, 2025, 54(12): 2173-2180. |
| [11] | 林可, 张雅馨, 吴闻杰, 李琳, 林长浪, 曾黄军, 聂海宇, 李志强, 张戈, 李真, 张沛雄, 陈玮冬, 陈振强. 掺镱混晶的光谱增益带宽调控与激光性能研究[J]. 人工晶体学报, 2025, 54(10): 1849-1857. |
| [12] | 丁家福, 和志豪, 王云杰, 苏欣. 通过硫代调控Ga、In、Tl磷酸盐光学性质的第一性原理研究[J]. 人工晶体学报, 2025, 54(1): 95-106. |
| [13] | 焦思慧, 吴红萍, 俞洪伟. CsBa2ScB8O16:首例结构中同时含有零维[B3O6]基元和一维B—O链的稀土硼酸盐[J]. 人工晶体学报, 2024, 53(9): 1550-1559. |
| [14] | 吴蕊, 胡洋, 唐荣芬, 阳倩, 王序, 吴怡逸, 聂登攀, 王环江. MOCVD生长ZnO薄膜的气相寄生反应路径研究[J]. 人工晶体学报, 2024, 53(9): 1608-1619. |
| [15] | 程佳佳, 吴梦琪, 杨敏, 王丽梅, 魏荣敏. [CoⅢ(DIEN)(N3)3]配合物的合成、晶体结构及量子化学研究[J]. 人工晶体学报, 2024, 53(8): 1409-1415. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS