
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1764-1771.DOI: 10.16553/j.cnki.issn1000-985x.2025.0194
收稿日期:2025-09-03
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
杨光赛,博士,副研究员。E-mail:ygsai@email.tjut.edu.cn;叶 宁,博士,教授。E-mail:nye@email.tjut.edu.cn
作者简介:石学梅(1987—),女,天津市人,博士研究生,助理研究员。E-mail:shixuemei@stud.tjut.edu.cn基金资助:
SHI Xuemei(
), YANG Guangsai(
), YE Ning(
)
Received:2025-09-03
Online:2025-10-20
Published:2025-11-11
摘要: 随着光学调制器需求的增长和发展,电光晶体的研究与探索日益重要。然而,目前实际可用的电光晶体种类有限,因此探索新型电光晶体成为一项紧迫任务。本文采用第一性原理计算软件ABINIT,结合密度泛函微扰理论和2n+1定理,系统研究了ABO3型钙钛矿结构的绿色能源材料代表CsGeX3(X=Cl、Br、I)晶体,通过分析电子和离子贡献对电光系数的影响,发现离子位移是影响电光系数的主要因素,其中Ge原子与卤素原子间的伸缩振动起主导作用,该振动增强了畸变八面体的极化率,从而提升了材料的电光性能。计算结果表明,空间群为R3m的CsGeI3晶体电光系数可达-30.51 pm/V,与典型电光晶体铌酸锂相当,展现出作为潜在电光晶体的应用前景。
中图分类号:
石学梅, 杨光赛, 叶宁. 锗基金属卤化物钙钛矿电光效应的第一性原理研究[J]. 人工晶体学报, 2025, 54(10): 1764-1771.
SHI Xuemei, YANG Guangsai, YE Ning. First-Principles Study on Electro-Optic Effect of Germanium-Based Metal Halide Perovskites[J]. Journal of Synthetic Crystals, 2025, 54(10): 1764-1771.
| Method | CsGeCl3 | CsGeBr3 | CsGeI3 |
|---|---|---|---|
| PBE | 10.433 | 10.849 | 11.560 |
| LDA | 10.148 | 10.469 | 11.196 |
| Expt. | 10.269 | 10.649 | 11.306 |
表 1 CsGeX3(X=Cl、Br、I)的晶格参数a (Bohr)
Table 1 Lattice parameters a of CsGeX3 (X=Cl, Br, I)
| Method | CsGeCl3 | CsGeBr3 | CsGeI3 |
|---|---|---|---|
| PBE | 10.433 | 10.849 | 11.560 |
| LDA | 10.148 | 10.469 | 11.196 |
| Expt. | 10.269 | 10.649 | 11.306 |
| Crystal | ||
|---|---|---|
| CsGeCl3 | 3.93 | 3.77 |
| CsGeBr3 | 5.25 | 5.15 |
| CsGeI3 | 7.16 | 6.98 |
| LiNbO3 | 5.43 | 5.41 |
| Expt. | 4.98 | 4.64 |
表2 CsGeX3(X=Cl、Br、I)和LiNbO3的介电常数
Table 2 Dielectric constants of CsGeX3(X=Cl, Br, I) and LiNbO3
| Crystal | ||
|---|---|---|
| CsGeCl3 | 3.93 | 3.77 |
| CsGeBr3 | 5.25 | 5.15 |
| CsGeI3 | 7.16 | 6.98 |
| LiNbO3 | 5.43 | 5.41 |
| Expt. | 4.98 | 4.64 |
| Crystal | First-principles study | ||||
|---|---|---|---|---|---|
| EO tensor component | γel/(pm·V-1) | γion/(pm·V-1) | γη /(pm·V-1) | Expt./(pm·V-1) | |
| CsGeCl3 | r13 | -1.21 | 9.88 | 8.67 | |
| CsGeCl3 | r33 | -2.77 | 3.73 | 0.96 | |
| CsGeCl3 | r51 | -1.26 | -2.97 | -4.23 | |
| CsGeBr3 | r13 | -2.94 | 0.43 | -2.51 | |
| CsGeBr3 | r33 | -3.79 | -3.76 | -7.55 | |
| CsGeBr3 | r51 | -3.00 | -17.56 | -20.56 | |
| CsGeI3 | r13 | -7.31 | 1.09 | -6.22 | |
| CsGeI3 | r33 | -4.57 | -12.00 | -16.57 | |
| CsGeI3 | r51 | -7.50 | -23.01 | -30.51 | |
| LiNbO3 | r13 | -1.23 | -10.61 | -11.84 | 9.25±0.07 |
| LiNbO3 | r33 | -4.69 | -26.97 | -31.66 | 29.40±0.20 |
| LiNbO3 | r51 | -1.28 | -21.30 | -22.58 | |
表3 CsGeX3(X=Cl、Br、I)和LiNbO3各EO系数的矩阵分量
Table 3 EO tensor components of CsGeX3(X=Cl, Br, I) and LiNbO3
| Crystal | First-principles study | ||||
|---|---|---|---|---|---|
| EO tensor component | γel/(pm·V-1) | γion/(pm·V-1) | γη /(pm·V-1) | Expt./(pm·V-1) | |
| CsGeCl3 | r13 | -1.21 | 9.88 | 8.67 | |
| CsGeCl3 | r33 | -2.77 | 3.73 | 0.96 | |
| CsGeCl3 | r51 | -1.26 | -2.97 | -4.23 | |
| CsGeBr3 | r13 | -2.94 | 0.43 | -2.51 | |
| CsGeBr3 | r33 | -3.79 | -3.76 | -7.55 | |
| CsGeBr3 | r51 | -3.00 | -17.56 | -20.56 | |
| CsGeI3 | r13 | -7.31 | 1.09 | -6.22 | |
| CsGeI3 | r33 | -4.57 | -12.00 | -16.57 | |
| CsGeI3 | r51 | -7.50 | -23.01 | -30.51 | |
| LiNbO3 | r13 | -1.23 | -10.61 | -11.84 | 9.25±0.07 |
| LiNbO3 | r33 | -4.69 | -26.97 | -31.66 | 29.40±0.20 |
| LiNbO3 | r51 | -1.28 | -21.30 | -22.58 | |
| Coefficient | CsGeCl3 | Expt. | CsGeBr3 | Expt. | CsGeI3 | Expt. |
|---|---|---|---|---|---|---|
| d15/(pm·V-1) | 4.67 | χeff=2 (0.98 eV) | 20.25 | χeff=18 (0.98 eV) | 93.76 | χeff=125 (0.70 eV) |
| d22/(pm·V-1) | -1.00 | -11.75 | -61.77 | |||
| d33/(pm·V-1) | 9.82 | 25.10 | 55.66 |
表4 CsGeX3(X=Cl、Br、I)的非线性光学系数
Table 4 Nonlinear optical coefficients of CsGeX3(X=Cl, Br, I)
| Coefficient | CsGeCl3 | Expt. | CsGeBr3 | Expt. | CsGeI3 | Expt. |
|---|---|---|---|---|---|---|
| d15/(pm·V-1) | 4.67 | χeff=2 (0.98 eV) | 20.25 | χeff=18 (0.98 eV) | 93.76 | χeff=125 (0.70 eV) |
| d22/(pm·V-1) | -1.00 | -11.75 | -61.77 | |||
| d33/(pm·V-1) | 9.82 | 25.10 | 55.66 |
| CsGeCl3 | CsGeBr3 | CsGeI3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A1 | A2 | E | A1 | A2 | E | A1 | A2 | E | ||||||
| TO | Expt. | TO | TO | Expt. | TO | Expt. | TO | TO | Expt. | TO | Expt. | TO | TO | Expt. |
| 15.01 | 41.62 | 17.43 | 12.78 | 36.45 | 24.09 | 8.88 | 29.95 | 21.05 | ||||||
| 133.88 | 146.58 | 59.37 | 58.50 | 85.15 | 91 | 45.11 | 49 | 64.53 | 35.77 | |||||
| 254.94 | 236.98 | 106.71 | 166.81 | 160 | 70.34 | 77 | 136.98 | 151 | 54.92 | |||||
| 216.79 | 202.98 | 140.91 | 139 | 117.78 | 105 | |||||||||
表5 计算CsGeX3(X=Cl、Br、I)在Γ点的振动模式 (cm-1)
Table 5 Calculated vibration modes at point Γ of CsGeX3 (X=Cl, Br, I)
| CsGeCl3 | CsGeBr3 | CsGeI3 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| A1 | A2 | E | A1 | A2 | E | A1 | A2 | E | ||||||
| TO | Expt. | TO | TO | Expt. | TO | Expt. | TO | TO | Expt. | TO | Expt. | TO | TO | Expt. |
| 15.01 | 41.62 | 17.43 | 12.78 | 36.45 | 24.09 | 8.88 | 29.95 | 21.05 | ||||||
| 133.88 | 146.58 | 59.37 | 58.50 | 85.15 | 91 | 45.11 | 49 | 64.53 | 35.77 | |||||
| 254.94 | 236.98 | 106.71 | 166.81 | 160 | 70.34 | 77 | 136.98 | 151 | 54.92 | |||||
| 216.79 | 202.98 | 140.91 | 139 | 117.78 | 105 | |||||||||
图2 (a)CsGeX3(X=Cl、Br、I)在Γ点最低频率光学模式的极性模式,每列上方的数字表示模式频率;(b)模式极性的最大分量幅度,A1、A2和E为振动模式;(c)CsGeX3(X=Cl、Br、I)在Γ点振动模式下的最大拉曼极化率;(d)CsGeX3(X=Cl、Br、I)振动模式下Pockels效应的最大值
Fig.2 (a) Mode polarities of the Г-point lowest frequency optical modes of CsGeX3(X=Cl, Br, I) and the number above each column indicates the mode frequency; (b) the maximum amplitude of the mode polarity, A1, A2 and E represent the vibration modes; (c) Raman susceptibility for the Γ-point optical modes; (d) the maximum value of the Pockels effect in the CsGeX3 (X=Cl, Br, I) vibration mode
| [1] |
LI M, TANG H X. Strong pockels materials[J]. Nature Materials, 2019, 18(1): 9-11.
DOI PMID |
| [2] |
REED G T, MASHANOVICH G, GARDES F Y, et al. Silicon optical modulators[J]. Nature Photonics, 2010, 4(8): 518-526.
DOI |
| [3] |
HECK M J R, CHEN H W, FANG A W, et al. Hybrid silicon photonics for optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(2): 333-346.
DOI URL |
| [4] | DEMKOV A A, BAJAJ C, EKERDT J G, et al. Materials for emergent silicon-integrated optical computing[J]. Journal of Applied Physics, 2021, 130(7): 070907. |
| [5] | NYE J F. Physical properties of crystals: their representation by tensors and matrices[M]. Oxford: Oxford University Press, 1985. |
| [6] | GUO W, POSADAS A B, DEMKOV A A. Epitaxial integration of BaTiO3 on Si for electro-optic applications[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2021, 39(3): 030804. |
| [7] | 朱文营, 王辉林. 晶体半波电压测量方法[J]. 山东理工大学学报, 2011, 25(6): 101-104. |
| ZHU W Y, WANG H L. Crystal half-wave voltage measurement method[J]. Journal of Shandong University of Technology, 2011, 25(6): 101-104 (in Chinese). | |
| [8] | 张国林, 邵长金, 孙为. 晶体电光调制实验中半波电压的测定[J]. 实验技术与管理, 2003, 20(2): 102-105. |
| ZHANG G L, SHAO C J, SUN W. Measurement of the half-wave voltage in the crystal electro-optic modulation experiment[J]. Experimental Techniques and Management, 2003, 20(2): 102-105 (in Chinese). | |
| [9] | 孙鉴, 牟海维, 刘世清, 等. 电光调制中半波电压测量方法的研究[J]. 大学物理, 2008(10): 40-43. |
| SUN J, MOU H W, LIU S Q, et al. Research on the measurement method of half-wave voltage in electro-optic modulation[J]. College Physics, 2008, 27(10): 40-43 (in Chinese). | |
| [10] |
ONUKI K, UCHIDA N, SAKU T. Interferometric method for measuring electro-optic coefficients in crystals[J]. Journal of the Optical Society of America, 1972, 62(9): 1030.
DOI URL |
| [11] | 商继芳, 孙 军, 张勇军, 等. 一种锥光干涉和近光轴调制结合测量晶体电光系数的方法[J]. 人工晶体学报, 2015, 44(11): 2925-2930. |
| SHANG J F, SUN J, ZHANG Y J, et al. A method to measure electro-optic coefficients of crystals by combining conoscopic interference and near optical axis electro-optic modulation[J]. Journal of Synthetic Crystals, 2015, 44(11): 2925-2930 (in Chinese). | |
| [12] |
ABEL S, STÖFERLE T, MARCHIORI C, et al. A strong electro-optically active lead-free ferroelectric integrated on silicon[J]. Nature Communications, 2013, 4: 1671.
DOI PMID |
| [13] |
WOOTEN E L, KISSA K M, YI-YAN A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 69-82.
DOI URL |
| [14] |
JANNER D, TULLI D, GARCÍA-GRANDA M, et al. Micro-structured integrated electro-optic LiNbO3 modulators[J]. Laser & Photonics Reviews, 2009, 3(3): 301-313.
DOI URL |
| [15] | BOYD R W, GAETA A L, GIESE E, et al. Nonlinear optics, in Springer Handbook of Atomic[J]. Molecular, and Optical Physics, 2008: 1097-1110. |
| [16] |
MCKEE R A, WALKER F J, CHISHOLM M F. Crystalline oxides on silicon: the first five monolayers[J]. Physical Review Letters, 1998, 81(14): 3014-3017.
DOI URL |
| [17] |
DUBOURDIEU C, BRULEY J, ARRUDA T M, et al. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode[J]. Nature Nanotechnology, 2013, 8(10): 748-754.
DOI |
| [18] |
HAMZE A K, DEMKOV A A. First-principles study of the linear electro-optical response in strained SrTiO3 [J]. Physical Review Materials, 2018, 2(11): 115202.
DOI URL |
| [19] |
VEITHEN M, GONZE X, GHOSEZ P. First-principles study of the electro-optic effect in ferroelectric oxides[J]. Physical Review Letters, 2004, 93(18): 187401.
DOI URL |
| [20] |
CELESTINE L, ZOSIAMLIANA R, GURUNG S, et al. A halide-based perovskite CsGeX3 (X = Cl, Br, and I) for optoelectronic and piezoelectric applications[J]. Advanced Theory and Simulations, 2024, 7(1): 2300566.
DOI URL |
| [21] |
HUANG L-Y, LAMBRECHT W R L. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si[J]. Physical Review B, 2016, 93(19): 195211.
DOI URL |
| [22] |
THIELE G, ROTTER H W, SCHMIDT K D. Kristallstrukturen und phasentransformationen von caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I)[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 1987, 545(2): 148-156.
DOI URL |
| [23] |
GONZE X, LEE C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55(16): 10355-10368.
DOI URL |
| [24] |
GONZE X, BEUKEN J M, CARACAS R, et al. First-principles computation of material properties: the ABINIT software project[J]. Computational Materials Science, 2002, 25(3): 478-492.
DOI URL |
| [25] |
GONZE X, AMADON B, ANTONIUS G, et al. The abinitproject: impact, environment and recent developments[J]. Computer Physics Communications, 2020, 248: 107042.
DOI URL |
| [26] |
VEITHEN M, GONZE X, GHOSEZ P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory[J]. Physical Review B, 2005, 71(12): 125107.
DOI URL |
| [27] |
CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method[J]. Physical Review Letters, 1980, 45(7): 566-569.
DOI URL |
| [28] |
PERDEW J, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1998, 23: 5048-5079.
DOI URL |
| [29] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
DOI PMID |
| [30] | HAMANN D R. Optimized norm-conserving Vanderbilt pseudopotentials[J]. Physical Review B, 2013, 88(8): 085117. |
| [31] |
TETER M. Additional condition for transferability in pseudopotentials[J]. Physical Review B, 1993, 48(8): 5031-5041.
PMID |
| [32] |
MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192.
DOI URL |
| [33] |
YAMADA K. Successive phase transitions and high ionic conductivity of trichlorogermanate (II) salts as studied by 35C1 NQR and powder X-ray diffraction[J]. Zeitschrift Für Naturforschung A, 1994, 49(1/2): 258-266.
DOI URL |
| [34] |
HUSIN R, BADRUDIN F W, TAIB M M, et al. Effects of strain on electronic and optical properties of LiNbO3: a first principles study[J]. Materials Research Express, 2019, 6(11): 114002.
DOI URL |
| [35] |
DE TORO J A, SERRANO M D, GARCı́A CABAÑES A, et al. Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3 [J]. Optics Communications, 1998, 154(1/2/3): 23-27.
DOI URL |
| [36] |
STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137(21): 6804-6819.
DOI URL |
| [37] |
LIN Z G, TANG L C, CHOU C P. Study on mid-IR NLO crystals CsGe(Br x Cl1– x )3 [J]. Optical Materials, 2008, 31(1): 28-34.
DOI URL |
| [38] |
WALTERS G, SARGENT E H. Electro-optic response in germanium halide perovskites[J]. The Journal of Physical Chemistry Letters, 2018, 9(5): 1018-1027.
DOI URL |
| [39] |
TANG L C, CHANG C S, HUANG J Y. Electronic structure and optical properties of rhombohedral CsGeI3 crystal[J]. Journal of Physics Condensed Matter, 2000, 12(43): 9129.
DOI URL |
| [40] |
LIN Z G, TANG L C, CHOU C P. Characterization and properties of novel infrared nonlinear optical crystal CsGe(Br x Cl1– x )3 [J]. Inorganic Chemistry, 2008, 47(7): 2362-2367.
DOI URL |
| [1] | 冷昊宁, 孙霄霄, 穆柏旭, 宁丽娜. KNbO3高压下相变行为的第一性原理研究[J]. 人工晶体学报, 2025, 54(9): 1584-1592. |
| [2] | 秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453. |
| [3] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [4] | 莫秋燕, 吴家隐, 荆涛. Pt修饰AlN单层对C2H6和C6H6吸附和气敏特性的第一性原理研究[J]. 人工晶体学报, 2025, 54(6): 1050-1060. |
| [5] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [6] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [7] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [8] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [9] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [10] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [11] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [12] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| [13] | 李俊哲, 刘彬文, 郭国聪. PbMg6Ga6S16晶体的合成与非线性光学性能的研究[J]. 人工晶体学报, 2025, 54(10): 1787-1795. |
| [14] | 陈鑫晨, 车王飞, 吴雅博, 李广卯, 崔晨, 杨志华, 潘世烈. Rb2CdSi3Se8和K2HgSi3S8晶体的合成及其光学性能研究[J]. 人工晶体学报, 2025, 54(10): 1722-1731. |
| [15] | 陆心宜, 王睿曦, 李梦月, 吴立明, 陈玲. NaCeF(SO4)2:新型氟化铈硫酸盐合成结构及其粉末非线性光学性能研究[J]. 人工晶体学报, 2025, 54(10): 1772-1779. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS