欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2164-2172.DOI: 10.16553/j.cnki.issn1000-985x.2025.0142

• 研究论文 • 上一篇    下一篇

锗铅合金中非替位点缺陷的第一性原理研究

贾梦江1(), 黄文奇1(), 王海1, 郑军2,3   

  1. 1.北京信息科技大学理学院,北京 102206
    2.中国科学院半导体研究所,光电子材料与器件全国重点实验室,北京 100083
    3.中国科学院大学材料科学与光电技术学院,北京 100049
  • 收稿日期:2025-07-07 出版日期:2025-12-20 发布日期:2026-01-04
  • 通信作者: 黄文奇,博士,副教授。E-mail:hwq5667@bistu.edu.cn
  • 作者简介:贾梦江(1997—),男,河南省人,硕士研究生。E-mail:13920252756@163.com
  • 基金资助:
    国家自然科学基金(11604016);国家自然科学基金(62250010);国家自然科学基金(62090054);国家自然科学基金(62274160);北京信息科技大学科研水平提升计划重点培养计划(2020KYNH222)

First-Principles Study of Non-Substitutional Point Defects in Germanium-Lead Alloys

JIA Mengjiang1(), HUANG Wenqi1(), WANG Hai1, ZHENG Jun2,3   

  1. 1. College of Applied Science,Beijing Information Science and Technology University,Beijing 102206,China
    2. Key Laboratory of Optoelectronic Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China
    3. College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2025-07-07 Online:2025-12-20 Published:2026-01-04

摘要: 锗铅合金是当前最有前景的硅基高效发光材料之一,但在生长过程中铅容易发生表面偏析,导致很难获得高质量且高铅组分的合金。本文从铅表面偏析的微观机制入手,采用基于密度泛函理论(DFT)的第一性原理计算方法,研究不同铅组分锗铅合金中替位铅和非替位点缺陷(VPbV)的性质随铅组分和掺杂条件的变化规律。研究表明,随着铅组分增加,替位铅的形成能升高,VPbV的形成能降低,这表明铅更容易发生表面偏析。当锗铅掺杂氢元素时,替位铅的形成能相对于未掺杂时降低,VPbV形成能相对于未掺杂时升高,这表明掺氢有助于抑制铅的表面偏析。并且,氢浓度越大,抑制铅表面偏析的效果越好。这些理论结果很好地解释了铅表面偏析的实验规律。本研究不仅可为锗铅合金的材料生长提供理论指导,相关的研究思想方法还可以扩展到其他IV族合金的研究中。

关键词: 锗铅合金; 非替位点缺陷; 形成能; 键能; 结合能; 密度泛函理论; 第一性原理计算

Abstract: Germanium-lead (Ge-Pb) alloys are recognized as one of the most promising silicon-compatible, high-efficiency luminescent materials. However, the attainment of high-quality alloys with elevated lead composition is significantly impeded by the pronounced tendency for lead surface segregation during crystal growth. To elucidate the underlying microscopic mechanisms of this segregation, first-principles calculations based on density functional theory (DFT) were employed. The properties of substitutional lead and non-substitutional point defects (VPbV) in Ge-Pb alloys were systematically investigated across varying lead compositions and under different doping conditions. It was found that an increase in lead composition elevates the formation energy of substitutional lead while concurrently reducing the formation energy of VPbV defects. This energetic trend indicates an enhanced propensity for lead surface segregation at higher lead concentrations. Furthermore, when the alloys are doped with hydrogen (H), the formation energy of substitutional lead reduces relative to the undoped case, whereas the formation energy of VPbV defects increases. This modification in defect energetics demonstrates that hydrogen doping effectively suppresses lead surface segregation. These theoretical results provide a consistent explanation for the experimentally observed patterns of lead surface segregation. Consequently, this study not only offers crucial theoretical guidance for the material growth of high-quality Ge-Pb alloys but also demonstrates that the fundamental concepts and methodologies developed herein can be extended to the investigation of other group-IV alloys.

Key words: germanium-lead alloy; non-substitutional point defect; formation energy; bond energy; binding energy; density functional theory; first-principles calculation

中图分类号: