| [1] |
RAD A S. First principles study of Al-doped graphene as nanostructure adsorbent for NO2 and N2O: DFT calculations[J]. Applied Surface Science, 2015, 357: 1217-1224.
|
| [2] |
KANG M F, LIU T, SUN H M, et al. Blue phosphorus phase GeSe monolayer for nitrogenous toxic gas sensing: a DFT study[J]. Sensors and Actuators A: Physical, 2024, 365: 114861.
|
| [3] |
WANG Z H, WANG M X, HU X F. Adsorption and sensing performances of greenhouse gases (CO2, CH4, N2O, and SF6) on pristine and Pd-doped GeSe monolayer: a DFT study[J]. Sensors and Actuators A: Physical, 2024, 370: 115222.
|
| [4] |
MISHRA N, PANDEY B P, KUMAR B, et al. Investigation of sensing properties of NO x adsorbed gas molecules on Fe-doped MoSe2 monolayer[J]. IEEE Sensors Journal, 2022, 22(12): 11665-11672.
|
| [5] |
MISHRA N, PANDEY B P, KUMAR B, et al. Phase transition impact on electronic and optical properties of Fe-doped MoSe2 monolayer via N2O adsorption[J]. Superlattices and Microstructures, 2021, 160: 107083.
|
| [6] |
LIANG B Q, LI W, REN Q Y, et al. Gas adsorption performance of Ta doped MoSe2 based on first principles[J]. Results in Physics, 2022, 42: 105978.
|
| [7] |
PHILEMON K T, KORIR K K, MUSEMBI R J, et al. Engineering 2D MoS2 for enhanced selectivity and sensitivity of selected green house gases (CO2, CH4 and N2O): an ab initio study[J]. Materialia, 2023, 29: 101785.
|
| [8] |
WANG Z H, WANG M X, HU X F, et al. Adsorption and sensing properties of greenhouse gases (CO2, CH4, N2O and SF6) on pristine and Cr modified WSe2 monolayer based on density functional theory[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 689: 133621.
|
| [9] |
CHEN J H, CHEN J X, ZENG W, et al. Adsorption of HCN on WSe2 monolayer doped with transition metal (Fe, Ag, Au, As and Mo)[J]. Sensors and Actuators A: Physical, 2022, 341: 113612.
|
| [10] |
HU Z Y, LI K Y, LU Y, et al. High thermoelectric performances of monolayer SnSe allotropes[J]. Nanoscale, 2017, 9(41): 16093-16100.
|
| [11] |
CHATTERJI T, WDOWIK U D, JAGŁO G, et al. Soft-phonon dynamics of the thermoelectric β-SnSe at high temperatures[J]. Physics Letters A, 2018, 382(29): 1937-1941.
|
| [12] |
LIU T H, QIN H B, YANG D G, et al. First principles study of gas molecules adsorption on monolayered β-SnSe[J]. Coatings, 2019, 9(6): 390.
|
| [13] |
WU J Y, LI Z B, LIANG T L, et al. Density functional theory provides insights into β-SnSe monolayers as a highly sensitive and recoverable ozone sensing material[J]. Micromachines, 2024, 15(8): 960.
|
| [14] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
|
| [15] |
KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
|
| [16] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
| [17] |
GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.
|
| [18] |
SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initio order-N materials simulation[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2745-2779.
|
| [19] |
MEIR Y, WINGREEN N S. Landauer formula for the current through an interacting electron region[J]. Physical Review Letters, 1992, 68(16): 2512-2515.
|
| [20] |
MOMMA K, IZUMI F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276.
|
| [21] |
WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033.
|
| [22] |
JIANG X G, ZHANG G H, YI W C, et al. Penta-BeP2 monolayer: a superior sensor for detecting toxic gases in the air with excellent sensitivity, selectivity, and reversibility[J]. ACS Applied Materials & Interfaces, 2022, 14(30): 35229-35236.
|
| [23] |
QIU P L, QIN Y X, BAI Y N. Ultra-sensitive methanol detection based on S-vacancy-enriched SnS: a combined theoretical and experimental investigation[J]. Vacuum, 2022, 198: 110880.
|
| [24] |
YONG Y L, CUI H L, ZHOU Q X, et al. C2N monolayer as NH3 and NO sensors: a DFT study[J]. Applied Surface Science, 2019, 487: 488-495.
|
| [25] |
GAURAV K, SANTHIBHUSHAN B, MEHLA R, et al. Investigating a fluorobenzene based single electron transistor as a toxic gas sensor[J]. Journal of Electronic Materials, 2021, 50(3): 1022-1031.
|
| [26] |
YONG Y L, GAO R L, WANG X J, et al. Highly sensitive and selective room-temperature gas sensors based on B6N6H6 monolayer for sensing SO2 and NH3: a first-principles study[J]. Results in Physics, 2022, 33: 105208.
|
| [27] |
SHUKLA A, GAUR N K. Adsorption of O3, SO3 and CH2O on two dimensional SnS monolayer: a first principles study[J]. Physica B: Condensed Matter, 2019, 572: 12-17.
|
| [28] |
KADHIM M M, ABED Z T, RAYID R, et al. The Cd-decorated AlN nanotube as a potential chemical sensor for chloropicrin: DFT studies[J]. Computational and Theoretical Chemistry, 2023, 1220: 113982.
|